MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2016 $-9{:}00~\mathrm{am}$ to 11:00 am

PAPER 126

MODULAR FORMS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let f be a meromorphic function on \mathbb{C} . What does it mean to say that f is an *elliptic function* with respect to the lattice $\Lambda \subset \mathbb{C}$? Show that an elliptic function with no poles is constant.

Let f be a non-constant elliptic function which is holomorphic on $\mathbb{C} \setminus \Lambda$, with a pole of order m > 0 at 0. Show that the sum of the zeroes of f (taken modulo Λ and counted according to multiplicity) is $\equiv 0 \pmod{\Lambda}$, and that the number of zeroes equals m.

Define the Weierstrass \wp -function associated to a lattice Λ , and show that it is an elliptic function, holomorphic on $\mathbb{C} \setminus \Lambda$, with a double pole at 0. Show also that for every $a \in \mathbb{C}$, the function $\wp(z) - a$ has either two simple zeroes $z, -z \not\equiv z \pmod{\Lambda}$, or one double zero at a point z with $2z \in \Lambda$.

Show that every elliptic function may be written as $A(\wp(z)) + B(\wp(z))\wp'(z)$ for rational functions A and B.

$\mathbf{2}$

What is *modular form* of weight k (for the full modular group $SL_2(\mathbb{Z})$)? Show that any modular form of weight 0 is constant.

Define the Eisenstein series $G_k(\tau)$ for a positive even integer $k \ge 4$, and show that it is a modular form of weight k, with q-expansion

$$G_k(\tau) = 2\zeta(k) + \frac{2(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n.$$

Let $E_k(\tau) = (2\zeta(k))^{-1}G_k(\tau)$. Show that

$$\Delta(\tau) = \frac{E_4(\tau)^3 - E_6(\tau)^2}{1728}$$

is a cusp form of weight 12 whose q-expansion has integral coefficients.

[The formulae $\zeta(4) = \pi^4/2.3^2.5$ and $\zeta(6) = \pi^6/3^3.5.7$ may be helpful.]

Write an essay on the theory of Hecke operators for modular forms on $SL_2(\mathbb{Z})$.

Part III, Paper 126

UNIVERSITY OF

 $\mathbf{4}$

Let $\Lambda \subset \mathbb{R}^n$ be a lattice. What is the dual lattice $\Lambda' \subset \mathbb{R}^n$? Write down an isomorphism between Λ' and the group of continuous homomorphisms $\operatorname{Hom}(\mathbb{R}^n/\Lambda, \mathbb{C}^{\times})$.

Prove the Poisson summation formula

$$\sum_{x \in \Lambda} f(x) = m(\Lambda)^{-1} \sum_{y \in \Lambda'} \hat{f}(y)$$

for a suitably-behaved function f on \mathbb{R}^n , where $m(\Lambda)$ is the Euclidean volume of \mathbb{R}^n/Λ . Hence obtain the functional equation

$$\Theta_{\Lambda}(\tau) = \sum_{x \in \Lambda} e^{\pi i \|x\|^2 \tau} = (\tau/i)^{-n/2} m(\Lambda)^{-1} \Theta_{\Lambda'}(-1/\tau)$$

for the theta function of Λ .

Deduce that the Epstein zeta function

$$E_{\Lambda}(s) = \sum_{0 \neq x \in \Lambda} \frac{1}{\|x\|^{2s}}$$

has a meromorphic continuation to \mathbb{C} , and satisfies the functional equation

$$\mathcal{E}_{\Lambda}(s) = \pi^{-s} \Gamma(s) E_{\Lambda}(s) = m(\Lambda)^{-1} \mathcal{E}_{\Lambda'}(n/2 - s).$$

[Convergence properties of Fourier transforms and series may be assumed without proof, and you may assume that $e^{-\pi x^2}$ is its own Fourier transform.]

UNIVERSITY OF

 $\mathbf{5}$

Let

$$G(\tau, s) = \sum_{m,n'} \frac{y^s}{\left|m\tau + n\right|^{2s}}$$

4

be the non-holomorphic Eisenstein series for $SL_2(\mathbb{Z})$, the sum being taken over $(m, n) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$.

(i) Show that $G(\tau, s)$ is invariant under $SL_2(\mathbb{Z})$, and satisfies the differential equation

$$\Delta G(\tau, s) = s(1 - s)G(\tau, s)$$

where

$$\Delta = -y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

is the Laplace–Beltrami operator on the upper half-plane.

(ii) Show that the constant term $A_0(y,s)$ of the Fourier expansion of $G(\tau,s)$ is given by

$$\pi^{-s}\Gamma(s)A_0(y,s) = 2\xi(2s)y^s + 2\xi(2s-1)y^{1-s}$$

where $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$.

END OF PAPER