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1

Let f be a meromorphic function on C. What does it mean to say that f is an
elliptic function with respect to the lattice Λ ⊂ C? Show that an elliptic function with no
poles is constant.

Let f be a non-constant elliptic function which is holomorphic on C\Λ, with a pole
of order m > 0 at 0. Show that the sum of the zeroes of f (taken modulo Λ and counted
according to multiplicity) is ≡ 0 (mod Λ), and that the number of zeroes equals m.

Define the Weierstrass ℘-function associated to a lattice Λ, and show that it is an
elliptic function, holomorphic on C \ Λ, with a double pole at 0. Show also that for every
a ∈ C, the function ℘(z) − a has either two simple zeroes z, −z 6≡ z (mod Λ), or one
double zero at a point z with 2z ∈ Λ.

Show that every elliptic function may be written as A(℘(z)) + B(℘(z))℘′(z) for
rational functions A and B.

2

What is modular form of weight k (for the full modular group SL2(Z))? Show that
any modular form of weight 0 is constant.

Define the Eisenstein series Gk(τ) for a positive even integer k > 4, and show that
it is a modular form of weight k, with q-expansion

Gk(τ) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞
∑

n=1

σk−1(n)q
n.

Let Ek(τ) = (2ζ(k))−1Gk(τ). Show that

∆(τ) =
E4(τ)

3 − E6(τ)
2

1728

is a cusp form of weight 12 whose q-expansion has integral coefficients.

[ The formulae ζ(4) = π4/2.32.5 and ζ(6) = π6/33.5.7 may be helpful.]

3

Write an essay on the theory of Hecke operators for modular forms on SL2(Z).
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4

Let Λ ⊂ R
n be a lattice. What is the dual lattice Λ′ ⊂ R

n? Write down an
isomorphism between Λ′ and the group of continuous homomorphisms Hom(Rn/Λ,C×).

Prove the Poisson summation formula

∑

x∈Λ

f(x) = m(Λ)−1
∑

y∈Λ′

f̂(y)

for a suitably-behaved function f on R
n, where m(Λ) is the Euclidean volume of Rn/Λ.

Hence obtain the functional equation

ΘΛ(τ) =
∑

x∈Λ

eπi‖x‖
2τ = (τ/i)−n/2m(Λ)−1ΘΛ′(−1/τ)

for the theta function of Λ.

Deduce that the Epstein zeta function

EΛ(s) =
∑

06=x∈Λ

1

‖x‖2s

has a meromorphic continuation to C, and satisfies the functional equation

EΛ(s) = π−sΓ(s)EΛ(s) = m(Λ)−1EΛ′(n/2− s).

[Convergence properties of Fourier transforms and series may be assumed without proof,
and you may assume that e−πx2

is its own Fourier transform.]
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5

Let

G(τ, s) =
∑′

m,n

ys

|mτ + n|2s

be the non-holomorphic Eisenstein series for SL2(Z), the sum being taken over (m,n) ∈
Z
2 \ {(0, 0)}.

(i) Show that G(τ, s) is invariant under SL2(Z), and satisfies the differential equation

∆G(τ, s) = s(1− s)G(τ, s)

where

∆ = −y2
(

∂2

∂x2
+

∂2

∂y2

)

is the Laplace–Beltrami operator on the upper half-plane.

(ii) Show that the constant term A0(y, s) of the Fourier expansion of G(τ, s) is given by

π−sΓ(s)A0(y, s) = 2ξ(2s)ys + 2ξ(2s − 1)y1−s

where ξ(s) = π−s/2Γ(s/2)ζ(s).

END OF PAPER

Part III, Paper 126


