MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2016 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 125

ELLIPTIC CURVES

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(i) Let $E \subset \mathbb{P}^2$ be a smooth plane cubic defined over \mathbb{Q} , with $0_E \in E(\mathbb{Q})$ a point of inflection. Show that E can be put in the Weierstrass form $y^2 = f(x)$ where f is a monic cubic polynomial. Define the group law on E via the chord and tangent process, and verify that $E(\mathbb{Q})$ is a group.

(ii) Show that if $0_E \neq T \in E[2]$ and $K = \mathbb{Q}(T)$ then there is a group homomorphism $\alpha : E(\mathbb{Q}) \to K^*/(K^*)^2$ satisfying $\alpha(P) = x(P) - x(T) \mod (K^*)^2$ for all $P \neq 0, T$.

$\mathbf{2}$

(i) State and prove Hasse's Theorem.[You should outline the proof of any results you need about degrees of isogenies, but general facts about invariant differentials may be quoted without proof.]

(ii) Show that if $\psi: E \to E'$ is an isogeny of elliptic curves over \mathbb{F}_p then the groups $E(\mathbb{F}_p)$ and $E'(\mathbb{F}_p)$ have the same order, but need not be isomorphic.

3

(i) Define a formal group, and an isomorphism of formal groups. Let K be a finite extension of \mathbb{Q}_p with valuation ring \mathcal{O}_K and uniformiser π . Show that if \mathcal{F} is a formal group over \mathcal{O}_K then $\mathcal{F}(\pi \mathcal{O}_K)$ contains a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$. [You should explicitly give the constructions of $\log(T)$, but need only sketch that for $\exp(T)$.]

(ii) Show that if E/\mathbb{Q} is an elliptic curve with $E(\mathbb{Q})_{\text{tors}} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$ then E has at least 4 primes of bad reduction.

$\mathbf{4}$

EITHER

(i) Write an essay on heights and their application to the proof of the Mordell-Weil Theorem.

OR

(ii) Write an essay on Galois cohomology and its application to the proof of the Weak Mordell-Weil Theorem.

CAMBRIDGE

 $\mathbf{5}$

Explain the method of descent by 2-isogeny, that often allows us to compute the rank of an elliptic curve over \mathbb{Q} . Illustrate by computing the ranks of the elliptic curves $y^2 = x(x^2 - x + 1)$ and $y^2 = x(x^2 + 5x - 6)$.

3

END OF PAPER