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(i) Let E ⊂ P2 be a smooth plane cubic defined over Q, with 0E ∈ E(Q) a point
of inflection. Show that E can be put in the Weierstrass form y2 = f(x) where f is a
monic cubic polynomial. Define the group law on E via the chord and tangent process,
and verify that E(Q) is a group.

(ii) Show that if 0E 6= T ∈ E[2] and K = Q(T ) then there is a group homomorphism
α : E(Q) → K∗/(K∗)2 satisfying α(P ) = x(P )− x(T ) mod (K∗)2 for all P 6= 0, T .
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(i) State and prove Hasse’s Theorem.[You should outline the proof of any results

you need about degrees of isogenies, but general facts about invariant differentials may be

quoted without proof.]

(ii) Show that if ψ : E → E′ is an isogeny of elliptic curves over Fp then the groups
E(Fp) and E

′(Fp) have the same order, but need not be isomorphic.
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(i) Define a formal group, and an isomorphism of formal groups. Let K be a finite
extension of Qp with valuation ringOK and uniformiser π. Show that if F is a formal group
over OK then F(πOK) contains a subgroup of finite index isomorphic to (OK ,+). [You
should explicitly give the constructions of log(T ), but need only sketch that for exp(T ).]

(ii) Show that if E/Q is an elliptic curve with E(Q)tors ∼= Z/2Z×Z/8Z then E has
at least 4 primes of bad reduction.
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EITHER

(i) Write an essay on heights and their application to the proof of the Mordell-Weil
Theorem.

OR

(ii) Write an essay on Galois cohomology and its application to the proof of the
Weak Mordell-Weil Theorem.
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Explain the method of descent by 2-isogeny, that often allows us to compute the
rank of an elliptic curve over Q. Illustrate by computing the ranks of the elliptic curves
y2 = x(x2 − x+ 1) and y2 = x(x2 + 5x− 6).
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