

MATHEMATICAL TRIPOS Part III

Wednesday, 1 June, 2016 1:30 pm to 4:30 pm

PAPER 122

TOPICS IN CATEGORY THEORY

Attempt no more than **ONE** question from Section I and **TWO** questions from Section II.

> There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1

(a) Give a description of the free braided monoidal category $\mathcal{F}br$ on the terminal category 1, and a description of the free braided strict monoidal category B on the terminal category 1. (You are not requested to prove the respective universal properties.)

 $\mathbf{2}$

(b) Prove that there is a canonical braided strict monoidal functor $\mathcal{F}br \to \mathbf{B}$ that is an equivalence. (You may use the coherence theorem for monoidal categories.)

$\mathbf{2}$

- (a) Define the notions of opmonoidal functor and opmonoidal natural transformation.
- (b) Define *opmonodial monad*. Show that, if a monad on a monoidal category is opmonoidal, then its Eilenberg-Moore category of algebras carries a monoidal structure, and that the associated forgetful functor is strict monoidal.
- (c) Deduce that if H is a bialgebra over a commutative ring k, prove that the category the left H-modules is monoidal and the associated forgetful functor into k-Mod is strict monoidal.
- (d) Continuing with the previous part, prove that if H is Hopf, then the category of left H-modules is monoidal left closed.

SECTION II

3

Let \mathcal{V} and \mathcal{W} be two monoidal categories. A Frobenius monoidal functor $\mathcal{V} \to \mathcal{W}$ is a functor $F: \mathcal{V} \to \mathcal{W}$ equipped with a monoidal structure (F, φ_0, φ) and an opmonoidal structure (F, ψ_0, ψ) that satisfy the following axioms.

(a) Suppose that $e: X \otimes Y \to I$ and $n: I \to Y \otimes X$ are the evaluation and coevaluation of a dual pair in \mathcal{V} . Prove that a Frobenius structure on the functor $F: \mathcal{V} \to \mathcal{W}$ as above makes

$$FX \otimes FY \xrightarrow{\varphi_{X,Y}} F(X \otimes Y) \xrightarrow{Fe} FI \xrightarrow{\psi_0} I \qquad I \xrightarrow{\varphi_0} FI \xrightarrow{Fn} F(Y \otimes X) \xrightarrow{\psi_{Y,X}} FY \otimes FX.$$

the evaluation and coevaluation of a dual pair.

Let $j: I \to A \leftarrow A \otimes A$: *m* be a monoid in the monoidal category \mathcal{V} . A coseparable structure is a morphism $\varepsilon: A \to I$ such that $\varepsilon \cdot m$ is the evaluation of a dual pair (making A dual to itself). We say that (A, j, m, ε) is a coseparable monoid.

- (b) Prove that if (A, j, m, ε) is a coseparable monoid in \mathcal{V} and $F: \mathcal{V} \to \mathcal{W}$ is a Frobenius functor, then FA carries a canonical structure of a coseparable monoid.
- (c) What can be deduced about the dimension of coseparable monoids in the category of vector spaces over a field (i.e. coseparable algebras)?

UNIVERSITY OF

 $\mathbf{4}$

A Yang-Baxter operator on an object X in a monoidal category is an invertible endomorphism $y: X \otimes X \to X \otimes X$ such that the following diagram commutes.

- (a) (i) Show that each object in a braided monoidal category carries a canonical Yang-Baxter operator.
 - (ii) Show that each Yang-Baxter operator $y: X \otimes X \to X \otimes X$ in a strict monoidal category \mathcal{C} induces a *strict monoidal functor* $\mathbf{B} \to \mathcal{C}$ that sends $1 \in \mathbf{B}$ to X; here **B** is the braid category.
- (b) Let H be a bimonoid in a symmetric monoidal category \mathcal{V} equipped with a coquasitriangular structure $\gamma: H \otimes H \to I$. Prove that γ satisfies

$$\begin{pmatrix} H^{\otimes 3} \xrightarrow{\delta \otimes \delta \otimes \delta} H^{\otimes 6} \xrightarrow{1 \otimes c \otimes c \otimes 1} H^{\otimes 6} \xrightarrow{\gamma \otimes \gamma \otimes \gamma} I \end{pmatrix} = \\ = \begin{pmatrix} H^{\otimes 3} \xrightarrow{\delta \otimes \delta \otimes \delta} H^{\otimes 6} \xrightarrow{1 \otimes 1 \otimes c \otimes 1 \otimes 1} H^{\otimes 6} \xrightarrow{1 \otimes \gamma \otimes \gamma \otimes 1} H^{\otimes 2} \xrightarrow{\gamma} I \end{pmatrix},$$

where c denotes the symmetry of \mathcal{V} . [Hint: You may wish to use the part (a)(i).]

 $\mathbf{5}$

(The last part of this problem is independent of the rest.)

- (a) Let $f: H \to K$ be a morphism of comonoids between bimonoids in a braided monoidal category. Show that the induced functor $f_*: \mathbf{Comod}(H) \to \mathbf{Comod}(K)$ is strict monoidal if and only if f is a morphism of monoids.
- (b) Let f,g: H → K be two morphisms of bialgebras over a field k and assume that H is a Hopf algebra. If f_{*},g_{*}: Comod(H) → Comod(K) are the induced functors between their categories of comodules, prove that any monoidal natural transformation β: f_{*} ⇒ g_{*} is invertible. (Hint: you may wish to consider a certain map H → k related to β.)
- (c) Let $(H, j, m, \delta, \varepsilon, S)$ be a Hopf algebra in vector spaces over a field k, with antipode $S: H \to H$. If M is a left H-module, define its subspace of invariants as

 $M^{H} = \{ m \in M : x \cdot m = \varepsilon(x)m \ \forall x \in H \}.$

Regard H as a left H-module via its multiplication, and endow $\operatorname{Hom}_k(H, H)$ with its induced left H-module structure. Prove that $(\operatorname{Hom}_k(H, H))^H$ is the subspace of morphisms of left H-modules $H \to H$.

6

- (a) Let $U: \mathcal{C} \to \mathcal{V}$ be a faithful functor into a monoidal category \mathcal{V} . Assume that \mathcal{C} is equipped with two monoidal structures $(\mathcal{C}, I, \bullet)$ and $(\mathcal{C}, I, \diamond)$ that share the unit object I, and that make U a strict monoidal functor. What conditions on a natural transformation $\varphi_{X,Y}: X \bullet Y \to X \diamond Y$ make φ together with the identity morphism $1 = I \to I$ into a monoidal structure for the identity functor $(\mathcal{C}, I, \diamond) \to (\mathcal{C}, I, \bullet)$? You should express these conditions as commutative diagrams.
- (b) Suppose that a coalgebra H over a field k has a unit j and two multiplications m and n that make (H, j, m) and (H, j, n) into bimonoids, giving rise to two tensor products $\diamond, \bullet: \mathbf{Comod}(H)^2 \to \mathbf{Comod}(H)$. Consider monoidal structures (φ, φ_0) on the identity functor

1: $(\mathbf{Comod}(H), k, \diamond) \longrightarrow (\mathbf{Comod}(H), k, \bullet)$

such that $\varphi_0: k \to k$ is the identity morphism. Classify these monoidal structures ϕ in terms of linear maps $H \otimes H \to k$. (*Hint: you may wish to use part (a).*)

END OF PAPER