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SECTION I

1

(a) Give a description of the free braided monoidal category Fbr on the terminal
category 1, and a description of the free braided strict monoidal category B on
the terminal category 1. (You are not requested to prove the respective universal
properties.)

(b) Prove that there is a canonical braided strict monoidal functor Fbr → B that is an
equivalence. (You may use the coherence theorem for monoidal categories.)

2

(a) Define the notions of opmonoidal functor and opmonoidal natural transformation.

(b) Define opmonodial monad. Show that, if a monad on a monoidal category is
opmonoidal, then its Eilenberg-Moore category of algebras carries a monoidal
structure, and that the associated forgetful functor is strict monoidal.

(c) Deduce that if H is a bialgebra over a commutative ring k, prove that the category
the left H-modules is monoidal and the associated forgetful functor into k-Mod is
strict monoidal.

(d) Continuing with the previous part, prove that if H is Hopf, then the category of left
H-modules is monoidal left closed.
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SECTION II

3

Let V and W be two monoidal categories. A Frobenius monoidal functor V → W
is a functor F : V → W equipped with a monoidal structure (F,ϕ0, ϕ) and an opmonoidal
structure (F,ψ0, ψ) that satisfy the following axioms.

FX ⊗ F (Y ⊗ Z)
1⊗ψY,Z//

ϕX,Y⊗Z

��

FX ⊗ (FY ⊗ FZ)
α−1

// (FX ⊗ FY )⊗ FZ

ϕX,Y ⊗1

��
F (X ⊗ (Y ⊗ Z))

Fα−
1 // F ((X ⊗ Y )⊗ Z)

ψX⊗Y,Z // F (X ⊗ Y )⊗ FZ

(1)

F (X ⊗ Y )⊗ FZ
ψX,Y ⊗1

//

ϕX⊗Y,Z

��

(FX ⊗ FY )⊗ FZ
α // FX ⊗ (FY ⊗ FZ)

1⊗ϕY,Z

��
F ((X ⊗ Y )⊗ Z)

Fα // F (X ⊗ (Y ⊗ Z))
ψX,Y⊗Z // FX ⊗ F (Y ⊗ Z)

(2)

(a) Suppose that e : X ⊗Y → I and n : I → Y ⊗X are the evaluation and coevaluation
of a dual pair in V. Prove that a Frobenius structure on the functor F : V → W as
above makes

FX⊗FY
ϕX,Y
−−−→ F (X⊗Y )

Fe
−−→ FI

ψ0

−→ I I
ϕ0

−→ FI
Fn
−−→ F (Y⊗X)

ψY,X
−−−→ FY⊗FX.

the evaluation and coevaluation of a dual pair.

Let j : I → A ← A ⊗ A : m be a monoid in the monoidal category V. A coseparable
structure is a morphism ε : A→ I such that ε ·m is the evaluation of a dual pair (making
A dual to itself). We say that (A, j,m, ε) is a coseparable monoid.

(b) Prove that if (A, j,m, ε) is a coseparable monoid in V and F : V → W is a Frobenius
functor, then FA carries a canonical structure of a coseparable monoid.

(c) What can be deduced about the dimension of coseparable monoids in the category
of vector spaces over a field (i.e. coseparable algebras)?
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4

A Yang-Baxter operator on an object X in a monoidal category is an invertible
endomorphism y : X ⊗X → X ⊗X such that the following diagram commutes.

(X ⊗X)⊗X
α // X ⊗ (X ⊗X)

1⊗y // X ⊗ (X ⊗X)
α−1

// (X ⊗X)⊗X

y⊗1

��
(X ⊗X)⊗X

y⊗1

OO

α

��

(X ⊗X)⊗X

α

��
X ⊗ (X ⊗X)

1⊗y

��

X ⊗ (X ⊗X)

X ⊗ (X ⊗X)
α−1

// (X ⊗X)⊗X
y⊗1 // (X ⊗X)⊗X

α // X ⊗ (X ⊗X)

1⊗y

OO

(1)

(a) (i) Show that each object in a braided monoidal category carries a canonical
Yang-Baxter operator.

(ii) Show that each Yang-Baxter operator y : X⊗X → X⊗X in a strict monoidal
category C induces a strict monoidal functor B→ C that sends 1 ∈ B to X;
here B is the braid category.

(b) Let H be a bimonoid in a symmetric monoidal category V equipped with a coquasi-
triangular structure γ : H ⊗H → I. Prove that γ satisfies

(

H⊗3 δ⊗δ⊗δ
−−−−→ H⊗6 1⊗c⊗c⊗1

−−−−−−→ H⊗6 γ⊗γ⊗γ
−−−−→ I

)

=

=
(

H⊗3 δ⊗δ⊗δ
−−−−→ H⊗6 1⊗1⊗c⊗1⊗1

−−−−−−−−→ H⊗6 1⊗γ⊗γ⊗1
−−−−−−→ H⊗2 γ

−→ I
)

,

where c denotes the symmetry of V. [Hint: You may wish to use the part (a)(i).]
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5

(The last part of this problem is independent of the rest.)

(a) Let f : H → K be a morphism of comonoids between bimonoids in a braided
monoidal category. Show that the induced functor f∗ : Comod(H)→ Comod(K)
is strict monoidal if and only if f is a morphism of monoids.

(b) Let f, g : H → K be two morphisms of bialgebras over a field k and assume
that H is a Hopf algebra. If f∗, g∗ : Comod(H) → Comod(K) are the induced
functors between their categories of comodules, prove that any monoidal natural
transformation β : f∗ ⇒ g∗ is invertible. (Hint: you may wish to consider a certain
map H → k related to β.)

(c) Let (H, j,m, δ, ε, S) be a Hopf algebra in vector spaces over a field k, with antipode
S : H → H. If M is a left H-module, define its subspace of invariants as

MH = {m ∈M : x ·m = ε(x)m ∀x ∈ H}.

Regard H as a left H-module via its multiplication, and endow Homk(H,H) with
its induced left H-module structure. Prove that (Homk(H,H))H is the subspace of
morphisms of left H-modules H → H.

6

(a) Let U : C → V be a faithful functor into a monoidal category V. Assume that C
is equipped with two monoidal structures (C, I, •) and (C, I, ⋄) that share the unit
object I, and that make U a strict monoidal functor. What conditions on a natural
transformation ϕX,Y : X • Y → X ⋄ Y make ϕ together with the identity morphism
1 = I → I into a monoidal structure for the identity functor (C, I, ⋄) → (C, I, •)?
You should express these conditions as commutative diagrams.

(b) Suppose that a coalgebra H over a field k has a unit j and two multiplications m
and n that make (H, j,m) and (H, j, n) into bimonoids, giving rise to two tensor
products ⋄, • : Comod(H)2 → Comod(H). Consider monoidal structures (ϕ,ϕ0)
on the identity functor

1: (Comod(H), k, ⋄) −→ (Comod(H), k, •)

such that ϕ0 : k → k is the identity morphism. Classify these monoidal structures
φ in terms of linear maps H ⊗H → k. (Hint: you may wish to use part (a).)
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