

MATHEMATICAL TRIPOS Part III

Wednesday, 1 June, 2016 9:00 am to 12:00 pm

PAPER 121

TOPICS IN SET THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

- 1
- (a) Define the gimel function I and give a precise statement of the singular cardinals hypothesis (SCH).
- (b) Assuming $cf(2^{\aleph_0}) = \aleph_1 < 2^{\aleph_0}$, show that there is an uncountable set \mathcal{A} of infinite sets of reals numbers of pairwise different size (i.e., if $A, B \in \mathcal{A}$, then $|A| \neq |B|$) such that none of them has size 2^{\aleph_0} and $\bigcup \mathcal{A} = \mathbb{R}$.

In the following, let σ_{α} be the α th uncountable singular cardinal, i.e., $\sigma_0 = \aleph_{\omega}, \sigma_1 = \aleph_{\omega+\omega}$, and so on.

- (c) Determine the least α such that σ_{α} does not have countable cofinality. (Justify your answer.)
- (d) Is there a cardinal κ such that $\sigma_{\kappa} = \kappa$? (Justify your answer.)
- (e) We write (σ) for the statement "there is a limit ordinal α such that $cf(\sigma_{\alpha}) \neq cf(\alpha)$ ". Show that if ZFC is consistent, then ZFC does not prove (σ) .

 $\mathbf{2}$

- (a) Give a precise statement of Freiling's axiom of symmetry $A_{<\omega_1}(\mathbb{R})$ and the generalised continuum hypothesis GCH.
- (b) Prove Freiling's Theorem: Freiling's axiom of symmetry is equivalent to the negation of the continuum hypothesis.
- (c) A set is called meagre if it is a countable union of nowhere dense sets. An uncountable set $A \subseteq \mathbb{R}$ is called *Lusin* if for all meagre sets $M \subseteq \mathbb{R}$, the set $A \cap M$ is countable. Prove that CH implies the existence of a Lusin set.
- (d) We call a set X a *linear increasing union of countable sets* if there is a linear order (I, \leq) and a family of countable sets $\{X_i; i \in I\}$ such that if $i \leq j$, then $X_i \subseteq X_j$, and furthermore $\bigcup_{i \in I} X_i = X$.

Prove that a set that is a linear increasing union of countable sets has at most cardinality \aleph_1 .

(e) Suppose that there is a Lusin set of cardinality 2^{\aleph_0} and that every set of cardinality $< 2^{\aleph_0}$ is meagre. Under these hypotheses, prove that CH holds.

- (a) Define the notions of a club set, the club filter, an ω -measurable cardinal, and a measurable cardinal.
- (b) Show that for arbitrary regular uncountable cardinals κ , the club filter on κ contains sets that are stationary but not club.
- (c) Show that the club filter on \aleph_2 is \aleph_2 -complete, but not an ultrafilter.
- (d) A weakly inaccessible cardinal κ is called *weakly Mahlo* if $\{\alpha < \kappa; \alpha = cf(\alpha)\}$ is stationary in κ . Show that if κ is weakly Mahlo, then there are unboundedly many weakly inaccessible cardinals below κ .
- (e) Prove that if there is an ω -measurable cardinal then there is a measurable cardinal.

4

3

- (a) Define both the von Neumann hierarchy \mathbf{V}_{α} and the constructible hierarchy \mathbf{L}_{α} for ordinals α by transfinite recursion. Define the set \mathbf{H}_{κ} of sets of hereditary cardinality $< \kappa$.
- (b) Prove that there is an ordinal α such that $\mathbf{L} \cap \mathbf{V}_{\alpha} \neq \mathbf{L}_{\alpha}$.
- (c) Show that the following properties are expressible by $\Pi_1^{\sf ZF}\text{-formulae:}$
 - (i) κ is a cardinal,
 - (ii) κ is regular.
- (d) Prove that $\mathbf{H}_{\omega_2} \not\models \mathsf{PowerSet}$.
- (e) A cardinal ι is called *inaccessible limit of inaccessibles* if it is inaccessible and the set of inaccessibles below it is unbounded in ι . Let ∞IC be the statement "there are unboundedly many inaccessible cardinals" and ILI be the statement "there is an inaccessible limit of inaccessibles". Show that if $ZFC + \infty IC$ is consistent, then it does not prove ILI.

UNIVERSITY OF

 $\mathbf{5}$

In all of the following, M is a countable transitive model of ZFC, \mathbb{P} is a partial order in M, and λ is a cardinal in M.

- (a) Define the notions of " \mathbb{P} is λ -closed" and " \mathbb{P} has the λ -chain condition".
- (b) Assuming that \mathbb{P} is a separative partial order in M, show that there is a G that is \mathbb{P} -generic over M and $G \notin M$.
- (c) Suppose that τ and τ' are P-names. Consider the P-name

$$\nu(\tau, \tau') := \{ (p, \tau) \, ; \, p \in \mathbb{P} \} \cup \{ (q, \tau') \, ; \, q \in \mathbb{P} \}.$$

Let G be a \mathbb{P} -generic filter over M. Determine $(\nu(\tau, \tau'))_G$ and describe in words what this set is.

- (d) Assuming that \mathbb{P} is a λ -closed partial order and that G is \mathbb{P} -generic over M, show that $M[G] \models ``\lambda$ is a cardinal".
- (e) Let α_1 and $\alpha_2 \in M$ be such that $M \models \aleph_1 = \alpha_1 \land \aleph_2 = \alpha_2$. Define (in M) the partial order \mathbb{P} consisting of functions $p : \operatorname{dom}(p) \to 2$ where $\operatorname{dom}(p)$ is a finite subset of $\alpha_2 \times \omega$, ordered by inclusion. Suppose that G is \mathbb{P} -generic over M.
 - (i) Show that $M[G] \models$ "there is an injection from α_2 into the power set of ω ".
 - (ii) Show that $M[G] \models ``\alpha_1$ is a cardinal".

END OF PAPER