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(a) Define the gimel function ג and give a precise statement of the singular cardinals
hypothesis (SCH).

(b) Assuming cf(2ℵ0) = ℵ1 < 2ℵ0 , show that there is an uncountable set A of infinite
sets of reals numbers of pairwise different size (i.e., if A,B ∈ A, then |A| 6= |B|)
such that none of them has size 2ℵ0 and

⋃
A = R.

In the following, let σα be the αth uncountable singular cardinal, i.e., σ0 = ℵω, σ1 = ℵω+ω,
and so on.

(c) Determine the least α such that σα does not have countable cofinality. (Justify your
answer.)

(d) Is there a cardinal κ such that σκ = κ? (Justify your answer.)

(e) We write (σ) for the statement “there is a limit ordinal α such that cf(σα) 6= cf(α)”.
Show that if ZFC is consistent, then ZFC does not prove (σ).

2

(a) Give a precise statement of Freiling’s axiom of symmetry A<ω1
(R) and the gener-

alised continuum hypothesis GCH.

(b) Prove Freiling’s Theorem: Freiling’s axiom of symmetry is equivalent to the negation
of the continuum hypothesis.

(c) A set is called meagre if it is a countable union of nowhere dense sets. An
uncountable set A ⊆ R is called Lusin if for all meagre sets M ⊆ R, the set A ∩M
is countable. Prove that CH implies the existence of a Lusin set.

(d) We call a set X a linear increasing union of countable sets if there is a linear order
(I,6) and a family of countable sets {Xi ; i ∈ I} such that if i 6 j, then Xi ⊆ Xj ,
and furthermore

⋃
i∈I Xi = X.

Prove that a set that is a linear increasing union of countable sets has at most
cardinality ℵ1.

(e) Suppose that there is a Lusin set of cardinality 2ℵ0 and that every set of cardinality
< 2ℵ0 is meagre. Under these hypotheses, prove that CH holds.
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(a) Define the notions of a club set, the club filter, an ω-measurable cardinal, and a
measurable cardinal.

(b) Show that for arbitrary regular uncountable cardinals κ, the club filter on κ contains
sets that are stationary but not club.

(c) Show that the club filter on ℵ2 is ℵ2-complete, but not an ultrafilter.

(d) A weakly inaccessible cardinal κ is called weakly Mahlo if {α < κ ; α = cf(α)} is
stationary in κ. Show that if κ is weakly Mahlo, then there are unboundedly many
weakly inaccessible cardinals below κ.

(e) Prove that if there is an ω-measurable cardinal then there is a measurable cardinal.

4

(a) Define both the von Neumann hierarchy Vα and the constructible hierarchy Lα for
ordinals α by transfinite recursion. Define the setHκ of sets of hereditary cardinality
< κ.

(b) Prove that there is an ordinal α such that L ∩Vα 6= Lα.

(c) Show that the following properties are expressible by ΠZF

1 -formulae:

(i) κ is a cardinal,

(ii) κ is regular.

(d) Prove that Hω2
6|= PowerSet.

(e) A cardinal ι is called inaccessible limit of inaccessibles if it is inaccessible and the
set of inaccessibles below it is unbounded in ι. Let ∞IC be the statement “there
are unboundedly many inaccessible cardinals” and ILI be the statement “there is an
inaccessible limit of inaccessibles”. Show that if ZFC + ∞IC is consistent, then it
does not prove ILI.
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In all of the following, M is a countable transitive model of ZFC, P is a partial order in
M , and λ is a cardinal in M .

(a) Define the notions of “P is λ-closed” and “P has the λ-chain condition”.

(b) Assuming that P is a separative partial order in M , show that there is a G that is
P-generic over M and G /∈ M .

(c) Suppose that τ and τ ′ are P-names. Consider the P-name

ν(τ, τ ′) := {(p, τ) ; p ∈ P} ∪ {(q, τ ′) ; q ∈ P}.

Let G be a P-generic filter over M . Determine (ν(τ, τ ′))G and describe in words
what this set is.

(d) Assuming that P is a λ-closed partial order and that G is P-generic over M , show
that M [G] |=“λ is a cardinal”.

(e) Let α1 and α2 ∈ M be such that M |= ℵ1 = α1∧ℵ2 = α2. Define (in M) the partial
order P consisting of functions p : dom(p) → 2 where dom(p) is a finite subset of
α2 × ω, ordered by inclusion. Suppose that G is P-generic over M .

(i) Show that M [G] |=“there is an injection from α2 into the power set of ω”.

(ii) Show that M [G] |=“α1 is a cardinal”.
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