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(a) Let G be a group, and (A,L) an automatic structure for G. Show that there exists
a constant N such that, if w ∈ L and g ∈ G satisfy g = wx or w = gx for some
x ∈ A ∪ {ǫ}, then:
(i) g has some representative v ∈ L of length |v| 6 |w|+N ; and
(ii) If u ∈ L is a representative of g with |u| > |w|+N , then there are infinitely many
representatives of g in L.

Henceforth let G be a group, and (A,L) an automatic structure for G with A a
symmetric set (that is, if a ∈ A, then a−1 ∈ A). Assume that all multiplier automata
Mx (x ∈ A∪{ǫ}) are normalised; they have no inaccessible states, and all dead states
are merged into one.

(b) Show that, given u ∈ L and x ∈ A, we can algorithmically construct v ∈ L with
v = ux in G.

(c) Using the result of part (a), show that the algorithm you described to compute v

in part(b) can be carried out in time O(|u|), and moreover that v can always be
constructed such that |v| 6 |u| + N for some fixed N which depends only on the
automatic structure (A,L).

(d) Show that, from (A,L), we can construct a word γ ∈ L such that γ = 1 in G.

(e) Let γ be as in part (d). Given a word w ∈ A∗, show that we can construct a word
z ∈ L with z = w in G, in time O(|w|2), with |z| 6 |w|N + |γ|.

(f) Conclude that there is an algorithm that, on input of any word w ∈ A∗ decides, in
time O(|w|2), whether or not w = 1 in G.

2

Let A be an infinite set, and let G be a subset of Aω, the set of ω-sequences of
elements of A. In the game GA players I (who plays first) and II alternately pick members
from A (with replacement, so repetitions are allowed) thereby generating a play p ∈ Aω.
I wins iff p ∈ G. Give A the discrete topology, Aω the product topology. By using a
fixed-point theorem or otherwise show that if G ⊆ Aω is open then one of the two players
must have a winning strategy.

[If you wish to appeal to a fixed-point theorem you should state it correctly.]
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State and prove Rice’s theorem. If you wish to appeal to other theorems you must
state them correctly but need not prove them.

4

(1) (a) What is a primitive recursive function?

(b) Define by recursion an ω-sequence of functions IN2 → IN of which the first three
members are addition, multiplication and exponentiation.

(c) Prove that every function in your sequence is primitive recursive.

(2) Is every semidecidable set X ⊆ IN the range of a primitive recursive f : IN → IN?

5

What are many-one reducibility and Turing-reducibility?

State and prove the Friedberg-Muchnik theorem.

6

Explain how every computable function can be represented by a λ-term.
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