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1 Define the terms monomorphism, strong (or extremal) monomorphism and regular
monomorphism. Show that any regular monomorphism is strong, and that if two
subobjects A′

 A, A′′
 A are strong then so is their intersection (= pullback)

A′ ∩A′′
 A, if it exists.

We call a morphism anodyne if it is both monic and epic, and we call an object
B saturated if it is injective with respect to the class of anodyne morphisms, i.e. every
diagram

A′ > ≫ A

∨
B

can be completed to a commutative triangle. Show that a strong subobject of a saturated
object is saturated.

Now suppose that C is complete and well-powered, and that every object A of C
admits a monomorphism A  B with B saturated. Show that every object admits an
anodyne morphism to a saturated object [hint: consider the smallest strong subobject of B
which contains A]. Deduce that the full subcategory S of saturated objects is reflective in
C. Show also that S is balanced [hint: first show that epimorphisms in S are also epic in C].

2 State the Yoneda Lemma. If C is a small category, show that any functor
F : C → Set may be expressed as a colimit in [C,Set] of a diagram of shape (1 ↓ F )op

whose vertices are representable functors, where 1 denotes a singleton set. [Hint: observe
that a natural transformation α : F → G is determined by the family of elements
(αA(x) | A ∈ ob C, x ∈ FA).]

Now suppose C has finite limits. Show that the following conditions on F are
equivalent:

(i) F preserves finite limits.

(ii) For any set S, (S ↓ F ) has finite limits.

(iii) (1 ↓ F )op is filtered.

(iv) F is expressible as a filtered colimit of representable functors.

[You may assume the result that filtered colimits commute with finite limits in Set.]
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3 Let C be a category with finite products. An object A of C is said to be exponentiable
if the functor (−)×A : C → C has a right adjoint (−)A. Show that the class of exponentiable
objects of C is closed under finite products.

Now suppose that C is complete and locally small, that it has a coseparator S, and
that every monomorphism in C is regular. Show that for every object B of C there is an
equalizer diagram of the form

B > >
∏

i∈I

S >
>

∏

j∈J

S

for suitable index sets I and J . Deduce that an object A is exponentiable if and only if
the functor C (−×A,S) : Cop → Set is representable. [Hint: if the functor (−)A exists, it
preserves limits.]

4 Explain what is meant by the monadic length of an adjunction

(F : C → D ⊣ G : D → C) ,

where D has reflexive coequalizers. [You should write down the definitions of the
Eilenberg–Moore comparison functor and its left adjoint, but you need not verify their
properties.]

For each natural number n, let Cn denote the category whose objects are sets A

equipped with n partial unary operations α1, α2 . . . , αn, such that α1(a) is defined for all
a ∈ A, and for i > 1 αi(a) is defined if and only if (αi−1(a) is defined and) αi−1(a) = a,
and whose morphisms (A,α1, . . . , αn) → (B, β1, . . . , βn) are functions f : A → B such
that f(αi(a)) = βi(f(a)) whenever αi(a) is defined, for each i. Show that the forgetful
functor Gn : Cn+1 → Cn has a left adjoint Fn [hint: Fn(A,α1, . . . , αn) may be taken to have
underlying set (A× {0}) ∪ (An × N), where An = {a ∈ A | αn(a) = a}.]

Show also that, for each m > n, the composite adjunction

Cn

Fn

<
Gn

> Cn+1

Fn+1

<
Gn+1

> Cn+2 · · · Cm−1

Fm−1

<
Gm−1

> Cm

induces the same monad (up to isomorphism) on Cn as Cn ⇄ Cn+1. Show that Gn creates
coequalizers of Gn-split pairs, and deduce that the composite adjunction displayed above
has monadic lengthm−n.
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5 Explain carefully what is meant by the assertion that limits of shape I commute
with colimits of shape J in a category C.

Let G be a group, considered as a category with one object, and let A be a G-
set, regarded as a functor G → Set. Show that limGA and colimGA may be identified
respectively with the set of G-fixed elements of A and the set of G-orbits.

Hence show that

(a) if G and H are finite groups of coprime orders, then limits of shape G commute
with colimits of shape H in Set;

(b) if G and H have a nontrivial common quotient group K, then limits of shape G
do not commute with colimits of shape H in Set.

[Hint for (b): let G and H act on (the underlying set of) K by (g, k) 7→ q(g).k and
(h, k) 7→ k.r(h)−1, where q and r are the quotient maps.]

6 Define the notion of abelian category, and prove from your definition that epimor-
phisms in an abelian category are stable under pullback. [Standard results on additive
categories may be assumed.]

Now suppose given an exact sequence 0 → A
f
→ B

g
→ C → 0 and a pullback square

B′
g′

> C ′

∨

h

∨

k

B
g

> C

in an abelian category. Show that there is a morphism f ′ : A → B′ making the sequence

0 → A
f ′

→ B′
g′

→ C ′ → 0 exact.

Deduce that if 0 → K → P → C → 0 and 0 → K ′ → P ′ → C → 0 are exact
sequences with P and P ′ projective, then K⊕P ′ ∼= K ′⊕P . [Hint: show that they are both
isomorphic to the pullback of P → C and P ′ → C.]

END OF PAPER
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