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(a) Let M be a complex manifold. Define the space Ap,q(M) of forms of type (p, q)
on M . Define the operators ∂ : Ap,q(M) → Ap+1,q(M) and ∂̄ : Ap,q(M) → Ap,q+1(M).

Given a holomorphic map f : M → N , show that f induces a pull-back map
f∗ : Ap,q(N) → Ap,q(M).

(b) Let D = {(z1, . . . , zn) ∈ C
n | |zi| < 1}. Show that if α is a (p, q)-form on D with

dα = 0, then there is a form β which is a sum of forms of type (p − 1, q) and (p, q − 1)
with dβ = α.

(c) Let ω = i
2
(dz1 ∧ dz̄1 + dz2 ∧ dz̄2) be the standard Kähler form on C

2. Find a
different Kähler form ω′ on C

2 − {(0, 0)} such that the two corresponding metrics have
the same volume form. [Hint: Look for ω′ = i∂∂̄ϕ(|z1|2 + |z2|2), where ϕ : R>0 → R is a

function.]

2

(a) Show that on a Kähler manifold, holomorphic functions are harmonic with
respect to ∆d.

(b) On a Riemannian manifold M with metric gij , the Laplacian ∆d on functions
(i.e., 0-forms) takes the form

∆d(u) =

n∑

k,l=1

1√
det(gij)

∂

∂xk

(√
det(gij)g

kl ∂u

∂xl

)

where (gij) = (gij)
−1. Show that if M is in fact a complex manifold of dimension n,

with local complex coordinates zj = xj +
√
−1xn+j, and g is a Kähler metric, then this

simplifies to

∆d(u) =

2n∑

k,l=1

gkl
∂2u

∂xk∂xl
.

(c) Let X1 = Cg1/Λ1, X2 = Cg2/Λ2 be complex tori. Let f : X1 → X2 be
a holomorphic map. Show that there exists an x ∈ C

g2 and a linear transformation
f̃ : Cg1 → C

g2 with f̃(Λ1) ⊆ Λ2 such that f(z + Λ1) = f̃(z) + x+ Λ2.

(d) Show that if X = V/Λ is a complex torus, then there are isomorphisms

Hp,q

∂̄
(X) ∼=

∧p
HomC(V,C)⊗

∧q
Hom

C
(V,C)

where

Hom
C
(V,C) = {f : V → C|f R-linear and f(cv) = c̄f(v) for all c ∈ C, v ∈ V }

denotes the space of C-antilinear homomorphisms.
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(a) Let E be a vector bundle. Define the notion of a connection D on E, and define
the curvature Θ of D.

If E1, E2 are two vector bundles with connections D1, D2, construct a connection
on E1 ⊗ E2 from D1, D2, and prove that the curvature Θ of this connection satisfies

Θ = Θ1 ⊗ 1 + 1⊗Θ2.

(b) Given a Hermitian metric h on a holomorphic vector bundle E over a complex
manifold M , prove there is a unique connection D on E compatible with both the metric
and holomorphic structure on E. Describe this connection in terms of a holomorphic frame
as a matrix of 1-forms.

(c) Let h be a Hermitian metric on a holomorphic vector bundle E over a complex
manifold M . Let S ⊆ E be a holomorphic sub-bundle. Then S inherits a Hermitian
structure from E. In particular, E and S carry connections DE and DS given by (b).

Show that the quotient bundle Q = E/S can be naturally identified with S⊥ ⊆ E
as C∞ vector bundles, and thus Q inherits a Hermitian structure.

Let πS : E → S denote the orthogonal projection, inducing also πS : T ∗

M ⊗ E →
T ∗

M ⊗ S. Show that DS = πS ◦DE .

Define the operator A on C∞ sections of S by

A(s) = DE(s)−DS(s).

Show that A(s) is a C∞ section of TM ⊗Q (viewing Q as a subbundle of E) and that

A(fs) = fA(s)

for f a C∞ function on M .
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(a) Let X be a topological space and U an open cover of X. Let F be a sheaf on
X. Define the Čech cohomology group Ȟq(U,F).

(b) Let X = C
2 \ {(0, 0)}, U = {U1, U2} the open cover given by

U1 = X \ {(z, 0) | z ∈ C \ {0}},
U2 = X \ {(0, z) | z ∈ C \ {0}},

Calculate Ȟ1(U,OX ). Sketch an argument that Ȟ1(U,OX ) ∼= H1(X,OX ).

(c) Let X be a topological space, x ∈ X a point and G a group. Consider the
skyscraper sheaf G defined by

G(U) =

{
G x ∈ U,

0 x 6∈ U,

with restriction maps G(U) → G(V ) being the identity whenever both groups are G. Verify
that G satisfies the sheaf axioms. Calculate the stalks Gy of G for all points y ∈ X.

(d) Let X be a Riemann surface (i.e., dimCX = 1). Denote by MX the sheaf of
meromorphic functions on X. As every holomorphic function is meromorphic, there is a
natural inclusion OX →֒ MX . Describe the stalks of MX/OX , and describe this sheaf as
a direct sum of skyscraper sheaves. Interpret the connecting homomorphism in the exact
sequence

0 → H0(X,OX ) → H0(X,MX) → H0(X,MX/OX) → H1(X,OX )

in terms of the existence of meromorphic functions with certain specified properties.
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Let Y ⊆ X be a smooth hypersurface in a complex manifold X of dimension n, and
let α be a meromorphic section of KX = Ωn

X the canonical line bundle of X. Assume α
only has a pole along Y , and that this pole is simple (order one). Locally in a coordinate
system z1, . . . , zn where Y is given by z1 = 0 one can write

α = h · dz1
z1

∧ dz2 ∧ · · · ∧ dzn

with z1 = 0 defining Y and h a holomorphic function. We set

ResY (α) = (h · dz2 ∧ · · · ∧ dzn)|Y .

(a) Show that ResY (α) is well-defined and it yields an element of Γ(Y,KY ).

(b) Now let X = P
n, and suppose Y is a smooth hypersurface defined by an

irreducible homogeneous polynomial f of degree n+ 1. Show that

α :=
∑

(−1)izif
−1dz0 ∧ · · · ∧ d̂zi ∧ · · · ∧ dzn

can be interpreted as a meromorphic section of KPn with simple poles along Y . Further-
more, show that ResY (α) ∈ H0(Y,KY ) is a nowhere vanishing section of KY . [Hint: Make

use of sections Z : U → C
n+1 \ {0} of the quotient map C

n+1 \ {0} → P
n. For the last

statement, you may use without proof that if f is an irreducible homogeneous polynomial,

then the equation f = 0 defines a smooth hypersurface Y if and only if ∂f/∂z0, . . . , ∂f/∂zn
do not vanish simultaneously on Y .]

END OF PAPER
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