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(a) Let M be a complex manifold. Define the space AP9(M) of forms of type (p,q)
on M. Define the operators 9 : AP4(M) — APTLI(M) and 9 : AP9(M) — APITL(M).

Given a holomorphic map f : M — N, show that f induces a pull-back map
f*r APIY(N) — APY(M).

(b) Let D = {(21,...,2n) € C"||z]| < 1}. Show that if « is a (p, ¢)-form on D with
da = 0, then there is a form § which is a sum of forms of type (p — 1,¢q) and (p,q — 1)
with df = a.

(c) Let w = %(dz1 A dZz; + dzg A dZ;) be the standard Kéhler form on C2. Find a
different Kihler form w’ on C? — {(0,0)} such that the two corresponding metrics have
the same volume form. [Hint: Look for w' = i00¢(|z1|* + |22|?), where ¢ : Rsg — R is a
function.]

(a) Show that on a Kéhler manifold, holomorphic functions are harmonic with
respect to Ag.

(b) On a Riemannian manifold M with metric g;;, the Laplacian Ay on functions
(i.e., 0-forms) takes the form

k=1 \/deJE gij) O )9 Oy

where (¢¥) = (g;;)~!. Show that if M is in fact a complex manifold of dimension n,

with local complex coordinates z; = x; + v/ —1x,4;, and g is a Kahler metric, then this

simplifies to
2
SPore
ki1 8xk8xl

(c) Let X3 = C9/Ay, Xy = C9/Ay be complex tori. Let f : X; — X2 be
a holomorphic map. Show that there exists an z € C% and a linear transformation
f:C9 — C9% with f(A1) C Ay such that f(z+ A1) = f(2) + x + As.

(d) Show that if X = V/A is a complex torus, then there are isomorphisms

H2(X) 2= \"Home(V,C) ® /\"Homg(V,C)
where

Homgz(V,C) = {f : V — C|f R-linear and f(cv) = ¢f(v) for all c€ C,v € V'}

denotes the space of C-antilinear homomorphisms.
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(a) Let E be a vector bundle. Define the notion of a connection D on E, and define
the curvature © of D.

If B, E5 are two vector bundles with connections Dy, Do, construct a connection
on F1 ® Es from D1, Do, and prove that the curvature © of this connection satisfies

0=0,214+1%06,.

(b) Given a Hermitian metric A on a holomorphic vector bundle E over a complex
manifold M, prove there is a unique connection D on E compatible with both the metric
and holomorphic structure on . Describe this connection in terms of a holomorphic frame
as a matrix of 1-forms.

(c) Let h be a Hermitian metric on a holomorphic vector bundle E over a complex
manifold M. Let S C E be a holomorphic sub-bundle. Then S inherits a Hermitian
structure from F. In particular, E' and S carry connections Dg and Dg given by (b).

Show that the quotient bundle @ = E/S can be naturally identified with S+ C E
as C'°° vector bundles, and thus @ inherits a Hermitian structure.

Let mg : E — S denote the orthogonal projection, inducing also mg : Ty; ® £ —
Tj& & S. Show that DS =Tg O DE

Define the operator A on C* sections of S by
A(s) = Dg(s) — Ds(s).
Show that A(s) is a C°° section of Ty ® @ (viewing @ as a subbundle of F) and that
A(fs) = fA(s)

for f a C'*° function on M.
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(a) Let )g be a topological space vand il an open cover of X. Let F be a sheaf on
X. Define the Cech cohomology group H(L, F).

(b) Let X = C2%\ {(0,0)}, &4 = {Uy,Us} the open cover given by
Ui = X \{(2,0)[z € C\{0}},
Uy = X \{(0,2)[z € C\{0}},
Calculate H' (4, Ox). Sketch an argument that H'(4, Ox) = H'(X, Ox).

(c) Let X be a topological space, x € X a point and G a group. Consider the
skyscraper sheaf G defined by

G U,
9 = {o iZU

with restriction maps G(U) — G(V') being the identity whenever both groups are G. Verify
that G satisfies the sheaf axioms. Calculate the stalks G, of G for all points y € X.

(d) Let X be a Riemann surface (i.e., dim¢ X = 1). Denote by Mx the sheaf of
meromorphic functions on X. As every holomorphic function is meromorphic, there is a
natural inclusion Ox < M x. Describe the stalks of M x/Ox, and describe this sheaf as
a direct sum of skyscraper sheaves. Interpret the connecting homomorphism in the exact
sequence

0— H(X,0x) - H'(X,Mx) - H* (X, Mx/Ox) - H'(X,Ox)

in terms of the existence of meromorphic functions with certain specified properties.
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Let Y C X be a smooth hypersurface in a complex manifold X of dimension n, and
let o be a meromorphic section of Ky = Q% the canonical line bundle of X. Assume o
only has a pole along Y, and that this pole is simple (order one). Locally in a coordinate
system z1,...,2, where Y is given by z; = 0 one can write

dz
oz:h~—1/\d22/\~~~/\dzn
21

with z; = 0 defining Y and h a holomorphic function. We set

Resy () = (h-dza A -+ Ndzy)ly-

(a) Show that Resy () is well-defined and it yields an element of I'(Y, Ky).

(b) Now let X = P", and suppose Y is a smooth hypersurface defined by an
irreducible homogeneous polynomial f of degree n + 1. Show that

o= (1) zf g A Adz A Adzy

can be interpreted as a meromorphic section of Kpr with simple poles along Y. Further-
more, show that Resy (o) € H’(Y, Ky ) is a nowhere vanishing section of Ky. [Hint: Make
use of sections Z : U — C"F1\ {0} of the quotient map C**1\ {0} — P". For the last
statement, you may use without proof that if f is an irreducible homogeneous polynomial,
then the equation f = 0 defines a smooth hypersurface Y if and only if 0f /0zq,...,0f /0zn
do not vanish simultaneously on Y]

END OF PAPER
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