MATHEMATICAL TRIPOS Part III

Tuesday, 31 May, 2016 $-1{:}30~\mathrm{pm}$ to $4{:}30~\mathrm{pm}$

PAPER 117

SPECTRAL GEOMETRY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let p be a point in a Riemannian manifold M. State how the value at p of the Laplacian of a function on M may be calculated using suitable geodesics through p.

Let S^d be the unit sphere in \mathbb{R}^{d+1} with the induced metric. State and prove the relation between the action of the Laplacian $\tilde{\Delta}$ on functions in \mathbb{R}^{d+1} and that of the Laplacian Δ on the restrictions of those functions to S^d .

Derive the spectrum of the Laplacian acting on smooth functions on S^d .

$\mathbf{2}$

Define a flat d-dimensional torus. For such a torus state and prove what is its spectrum for the Laplacian acting on smooth functions.

Prove that isospectral flat two-dimensional tori are isometric.

3

State the transplantation theorem for the eigenfunctions of the Laplacian between manifolds constructed from copies of a Euclidean domain by identifying various pairs of boundary faces of those domains.

Describe the "propeller domains" in \mathbb{R}^2 and show that there is a 3-parameter family of pairs of such domains with the two members of each pair isospectral but not isometric.

$\mathbf{4}$

A group T of order 168 has Gassman equivalent non-conjugate subgroups U_1 and U_2 of index 7. Given that T is generated by elements A and B where A, B and AB all have order 7, construct a pair of isospectral Riemann surfaces of genus 3.

Explain how your surfaces could be isometric and, if they are, how you could nevertheless obtain non-isometric surfaces of genus three.

UNIVERSITY OF

 $\mathbf{5}$

Find the maximum number of pairwise disjoint simple closed geodesics that can occur in a Riemann surface of genus $g \ge 2$. Show that a maximal set of such geodesics determines a decomposition of S whose main features may be represented by a certain graph. Give two possible graphs for surfaces of genus three and indicate a diffeomorphism between the corresponding surfaces, explaining why this is not evident from the graphs.

Use this decomposition of S to identify parameters that determine S up to isometry. Define Teichmüller space, giving an important property of its analytic structure.

State Wolpert's theorem and identify two major steps in its proof, commenting on their role.

END OF PAPER