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1

Let p be a point in a Riemannian manifold M . State how the value at p of the

Laplacian of a function on M may be calculated using suitable geodesics through p.

Let Sd be the unit sphere in R
d+1 with the induced metric. State and prove the

relation between the action of the Laplacian ∆̃ on functions in R
d+1 and that of the

Laplacian ∆ on the restrictions of those functions to Sd.

Derive the spectrum of the Laplacian acting on smooth functions on Sd.

2

Define a flat d-dimensional torus. For such a torus state and prove what is its

spectrum for the Laplacian acting on smooth functions.

Prove that isospectral flat two-dimensional tori are isometric.

3

State the transplantation theorem for the eigenfunctions of the Laplacian between

manifolds constructed from copies of a Euclidean domain by identifying various pairs of

boundary faces of those domains.

Describe the “propeller domains” in R
2 and show that there is a 3-parameter family

of pairs of such domains with the two members of each pair isospectral but not isometric.

4

A group T of order 168 has Gassman equivalent non-conjugate subgroups U1 and

U2 of index 7. Given that T is generated by elements A and B where A, B and AB all

have order 7, construct a pair of isospectral Riemann surfaces of genus 3.

Explain how your surfaces could be isometric and, if they are, how you could

nevertheless obtain non-isometric surfaces of genus three.
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5

Find the maximum number of pairwise disjoint simple closed geodesics that can

occur in a Riemann surface of genus g > 2. Show that a maximal set of such geodesics

determines a decomposition of S whose main features may be represented by a certain

graph. Give two possible graphs for surfaces of genus three and indicate a diffeomorphism

between the corresponding surfaces, explaining why this is not evident from the graphs.

Use this decomposition of S to identify parameters that determine S up to isometry.

Define Teichmüller space, giving an important property of its analytic structure.

State Wolpert’s theorem and identify two major steps in its proof, commenting on

their role.
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