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1

Suppose f : M → R is a Morse function on a compact Riemannian manifold. For
x ∈ M , let γx(t) be the solution to the downward gradient flow equation γ′(t) = −∇f |γ(t)
which satisfies γ(0) = x. Let C[a,b] = f−1([a, b]), and suppose that |∇f | > ǫ > 0 on C[a,b].
Show that there is some T (depending only on a, b, and ǫ) such that if x ∈ C[a,b], then
γx(t) 6∈ C[a,b] for t > T .

Now let Uǫ = {x ∈ M | |∇f | < ǫ}, and let Cǫ = M \ Uǫ be its complement. Show
that the total amount of time γx(t) spends in Cǫ is bounded independent of x.

Finally, suppose that limt→∞ γx(t) = x∞. Stating clearly any theorems you use,
show that for an appropriate choice of Riemannian metric onM , γx(t) decays exponentially
to x∞; that is, there are constants C and k > 0 such that d(γx(t), x∞) < Ce−kt. Give an
example to show that if f is not Morse, γx(t) need not decay exponentially to x∞.

2

Explain what it means to say that two handle decompositions of a manifold M are
related by a handleslide.

Suppose that we are given a handle decomposition ofM with k-handlesHk,1, . . .Hk,r

and k + 1-handles Hk+1,1, . . . ,Hk+1,s. Let Bi be the belt sphere of Hk,i, and let Aj be
the attaching sphere of Hk+1,j. Suppose that B1 intersects A1 transversely in a single
point. Without using the handle cancellation theorem, show that after a sequence of
handleslides, we can obtain a new handle decomposition of M with k-handles H′

k,1, . . .H
′

k,r

and k+1-handles H′

k+1,1, . . . ,H
′

k+1,s such that A′

1 intersects B′

1 transversely in one point,
and A′

j ∩B′

1 = ∅ for j > 1.

By a further series of handleslides, show that we can obtain a new handle decompo-
sition of M with k-handles H′′

k,1, . . .H
′′

k,r and k + 1-handles H′′

k+1,1, . . . ,H
′′

k+1,s such that
A′′

1 intersects B′′

1 transversely in one point, A′′

j ∩ B′′

1 = ∅ for j > 1, and A′′

1 ∩ B′′

i = ∅ for
i > 1.

Express the intersection numbers A′′

l ·B
′′

k in terms of Aj · Bi.
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Suppose that M is a Riemannian manifold of dimension n, and that γ : [0, 1] → M
is a geodesic. What is a Jacobi field on γ? Show that the space of Jacobi fields on γ forms
a vector space of dimension 2n.

Stating clearly any theorems you use, show that if the image of γ is contained in a
geodesically convex open set U , then any Jacobi field on γ is determined by its values at
the endpoints of γ.

Now suppose that M = SU(3) with its bi-invariant metric, and let γ(t) = exp(tA),
where A is a diagonal matrix with eigenvalues 2πi/3, 2πi/3, and −4πi/3. Show that the
space of Jacobi fields on γ which vanish at both endpoints of γ has dimension > 4.

4

Let M be a Riemannian manifold, and let γ : [0, 1] → M be a geodesic with
γ(0) = p, γ(1) = q. Under what conditions is γ a nondegenerate critical point of the
energy functional E : Ω(p, q) → R? Assuming that γ is a nondegenerate critical point,
explain clearly how to compute its index. (No proofs are needed, just the statements.)

Let Sn be the sphere with the round metric, and let p, q ∈ Sn with p 6= −q. Describe
the set of critical points of E in this case. What are their indices? Justify your answers.
Hence or otherwise, compute H∗(Ω(S

n)) for n > 2.

Stating clearly any results from homotopy theory that you use, show that πk(S
n) ≃

πk+1(S
n+1) for k 6 2n − 2.

5

Suppose that L0 and L1 are Lagrangian submanifolds of a symplectic manifold
(M,ω), and let Ω(L0, L1) be the space of smooth paths from L0 to L1. Assuming that
Ω(L0, L1) is path connected and that H2(M,L0 ∪ L1) = 0, define the area functional

A : Ω(L0, L1) → R. Under the given conditions, show that A is well-defined up to the
addition of a global constant. Determine (with proof) the set of critical points for the area
functional.

What is meant by a compatible almost complex structure J on (M,ω)? Show that
if M has a Riemannian metric induced by a compatible almost complex structure J , then
the set of formal solutions to the downward gradient flow equation for A is given by J-
holomorphic maps of the strip R × [0, 1] → M with the property that R × {i} 7→ Li for
i ∈ {0, 1}.
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