

MATHEMATICAL TRIPOS Part III

Thursday 2 June, 2016 1:30 pm to 4:30 pm

PAPER 116

MORSE THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Suppose $f: M \to \mathbb{R}$ is a Morse function on a compact Riemannian manifold. For $x \in M$, let $\gamma_x(t)$ be the solution to the downward gradient flow equation $\gamma'(t) = -\nabla f|_{\gamma(t)}$ which satisfies $\gamma(0) = x$. Let $C_{[a,b]} = f^{-1}([a,b])$, and suppose that $|\nabla f| \ge \epsilon > 0$ on $C_{[a,b]}$. Show that there is some T (depending only on a, b, and ϵ) such that if $x \in C_{[a,b]}$, then $\gamma_x(t) \notin C_{[a,b]}$ for t > T.

 $\mathbf{2}$

Now let $U_{\epsilon} = \{x \in M \mid |\nabla f| < \epsilon\}$, and let $C_{\epsilon} = M \setminus U_{\epsilon}$ be its complement. Show that the total amount of time $\gamma_x(t)$ spends in C_{ϵ} is bounded independent of x.

Finally, suppose that $\lim_{t\to\infty} \gamma_x(t) = x_\infty$. Stating clearly any theorems you use, show that for an appropriate choice of Riemannian metric on M, $\gamma_x(t)$ decays exponentially to x_∞ ; that is, there are constants C and k > 0 such that $d(\gamma_x(t), x_\infty) < Ce^{-kt}$. Give an example to show that if f is not Morse, $\gamma_x(t)$ need not decay exponentially to x_∞ .

$\mathbf{2}$

Explain what it means to say that two handle decompositions of a manifold M are related by a *handleslide*.

Suppose that we are given a handle decomposition of M with k-handles $\mathcal{H}_{k,1}, \ldots, \mathcal{H}_{k,r}$ and k + 1-handles $\mathcal{H}_{k+1,1}, \ldots, \mathcal{H}_{k+1,s}$. Let B_i be the belt sphere of $\mathcal{H}_{k,i}$, and let A_j be the attaching sphere of $\mathcal{H}_{k+1,j}$. Suppose that B_1 intersects A_1 transversely in a single point. Without using the handle cancellation theorem, show that after a sequence of handleslides, we can obtain a new handle decomposition of M with k-handles $\mathcal{H}'_{k,1}, \ldots, \mathcal{H}'_{k,r}$ and k + 1-handles $\mathcal{H}'_{k+1,1}, \ldots, \mathcal{H}'_{k+1,s}$ such that A'_1 intersects B'_1 transversely in one point, and $A'_i \cap B'_1 = \emptyset$ for j > 1.

By a further series of handleslides, show that we can obtain a new handle decomposition of M with k-handles $\mathcal{H}''_{k,1}, \ldots \mathcal{H}''_{k,r}$ and k + 1-handles $\mathcal{H}''_{k+1,1}, \ldots, \mathcal{H}''_{k+1,s}$ such that A''_1 intersects B''_1 transversely in one point, $A''_j \cap B''_1 = \emptyset$ for j > 1, and $A''_1 \cap B''_i = \emptyset$ for i > 1.

Express the intersection numbers $A_l'' \cdot B_k''$ in terms of $A_j \cdot B_i$.

CAMBRIDGE

3

Suppose that M is a Riemannian manifold of dimension n, and that $\gamma : [0,1] \to M$ is a geodesic. What is a *Jacobi field* on γ ? Show that the space of Jacobi fields on γ forms a vector space of dimension 2n.

Stating clearly any theorems you use, show that if the image of γ is contained in a geodesically convex open set U, then any Jacobi field on γ is determined by its values at the endpoints of γ .

Now suppose that M = SU(3) with its bi-invariant metric, and let $\gamma(t) = \exp(tA)$, where A is a diagonal matrix with eigenvalues $2\pi i/3$, $2\pi i/3$, and $-4\pi i/3$. Show that the space of Jacobi fields on γ which vanish at both endpoints of γ has dimension ≥ 4 .

$\mathbf{4}$

Let M be a Riemannian manifold, and let $\gamma : [0,1] \to M$ be a geodesic with $\gamma(0) = p, \gamma(1) = q$. Under what conditions is γ a nondegenerate critical point of the energy functional $E : \Omega(p,q) \to \mathbb{R}$? Assuming that γ is a nondegenerate critical point, explain clearly how to compute its index. (No proofs are needed, just the statements.)

Let S^n be the sphere with the round metric, and let $p, q \in S^n$ with $p \neq -q$. Describe the set of critical points of E in this case. What are their indices? Justify your answers. Hence or otherwise, compute $H_*(\Omega(S^n))$ for n > 2.

Stating clearly any results from homotopy theory that you use, show that $\pi_k(S^n) \simeq \pi_{k+1}(S^{n+1})$ for $k \leq 2n-2$.

$\mathbf{5}$

Suppose that L_0 and L_1 are Lagrangian submanifolds of a symplectic manifold (M, ω) , and let $\Omega(L_0, L_1)$ be the space of smooth paths from L_0 to L_1 . Assuming that $\Omega(L_0, L_1)$ is path connected and that $H_2(M, L_0 \cup L_1) = 0$, define the *area functional* $A : \Omega(L_0, L_1) \to \mathbb{R}$. Under the given conditions, show that A is well-defined up to the addition of a global constant. Determine (with proof) the set of critical points for the area functional.

What is meant by a compatible almost complex structure J on (M, ω) ? Show that if M has a Riemannian metric induced by a compatible almost complex structure J, then the set of formal solutions to the downward gradient flow equation for A is given by Jholomorphic maps of the strip $\mathbb{R} \times [0,1] \to M$ with the property that $\mathbb{R} \times \{i\} \mapsto L_i$ for $i \in \{0,1\}$.

END OF PAPER