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1

If M is a smooth manifold, explain what is meant by a smooth vector field on M .
For α : M → N a diffeomorphism and X a smooth vector field on M , define the vector
field α∗X on N . Given two smooth vector fields X,Y on M , define the Lie bracket vector
field [X,Y ] and state the corresponding Jacobi identity.

Given a smooth vector field X on M , describe without proof what is meant by a
local flow φt : U → φtU determined by X (existence and uniqueness statements for such
flows may be assumed). Define what is meant by a smooth tensor on M , and for any
such tensor T define the Lie derivative LXT . Identify (with proofs) LXT when T = f is
a smooth function and T = Y is a smooth vector field.

If α : M → N is a diffeomorphism and X a smooth vector field on M , with φt a
corresponding local flow, show that the vector field α∗X has a corresponding local flow
given by α ◦ φt ◦ α−1. If M = N , deduce that α∗X = X if and only if α and the local
flows φt determined by X always commute.

2

Define the exterior derivative map d on p-forms on a smooth manifold M , showing
that it is well-defined globally under your definition. Define what is meant by the de Rham
cohomology groups H

p
DR(M,R) of M . Assuming Green’s theorem, show that if ∆ is a

2-dimensional disc then H1
DR(∆,R) = 0. If M is compact of dimension n, state Stokes’s

theorem without boundary, showing that it defines a linear map Hn
DR(M,R) → R.

Now let G denote a Lie group of dimension n. For g ∈ G, we let Lg : G → G be
given by left-multiplication by g. Show that one can define a non-zero invariant n-form
ω on G, that is a smooth n-form for which (Lg)

∗ω = ω for all g ∈ G (you need not check
that the n-form you define is actually smooth). Assume now the fact that for any n-form
ω on G, there is an invariant n-form with the same de Rham cohomology class; when G

is compact, deduce that Hn
DR(G,R) = R.

Using the results from this question, calculate de Rham cohomology groupsH1
DR(S

2,R)
and H3

DR(S
3,R).
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Given a smooth curve γ : [a, b] → M on a smooth manifold, define what is meant by
a smooth vector field V (t) along γ. Given a Koszul connection ∇ on M , explain carefully
the concepts of the covariant derivative of V (t) along γ, and V (t) being parallel along γ.
Given a tangent vector Va ∈ Tγ(a)M , show that there exists a unique parallel vector field
V (t) along γ with V (a) = Va. Hence deduce the existence of parallel translation maps
τt : Tγ(a)M → Tγ(t)M , which are isomorphisms of vector spaces.

Given two Koszul connections ∇ and ∇̃, show that there is a tensor ∆ on M defined
by ∆(X,Y ) = ∇XY − ∇̃XY , where X and Y are local vector fields. A smooth curve γ

is said to be a geodesic with respect to a Koszul connection ∇ if the smooth vector field
γ̇(t) along γ is parallel. Explain briefly why is it true that a geodesic (together with
parametrisation) is locally determined by its initial point and tangent vector. Show that
the connections ∇ and ∇̃ have the same geodesics (with same parametrizations) if and
only if ∆(v, v) = 0 for all tangent vectors v.

4

Let M be an embedded smooth submanifold of a smooth manifold N . Explain how
a Koszul connection ∇ on N induces a linear connection (which we shall also denote as
∇) on the bundle TN |M , the restriction of TN to M . Suppose 〈 , 〉 is a Riemannian
metric on N , thus inducing a Riemannian metric on M and determining an orthogonal
projection map π : TN |M → TM of bundles on M . Show that D = π ◦ ∇ is a Koszul
connection on M .

State the defining properties for the Levi–Civita connection on a Riemannian
manifold. Suppose now in the above set-up, we take ∇ to be the Levi–Civita connection
on N . For local vector fields V,W on M , we set II(V,W ) to be the normal component
of ∇V W with respect to the metric. Assuming the fact that D as defined above (namely
where DV W is the tangential component of ∇V W ) is the Levi–Civita connection on M ,
show that II induces a symmetric bilinear form on the tangent bundle of M with values
in the normal bundle (called the second fundamental form). If R denotes the Riemannian
curvature tensor on N and R̄ the Riemannian curvature tensor on M , for tangent vectors
v,w, x, y to M at P , prove that

R̄(x, y, v, w) = R(x, y, v, w) + 〈II(v, x), II(w, y)〉 − 〈II(v, y), II(w, x)〉.

[You may use the fact that for a connection ∇ on a vector bundle E, with curvature

operator denoted by R, then for any section σ of E,

R(V,W )(σ) = ∇V ∇Wσ −∇W∇V σ −∇[V,W ]σ. ]
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