MATHEMATICAL TRIPOS Part III

Monday, 30 May, 2016 1:30 pm to 4:30 pm

PAPER 115

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

 $\mathbf{1}$

If M is a smooth manifold, explain what is meant by a *smooth vector field* on M. For $\alpha : M \to N$ a diffeomorphism and X a smooth vector field on M, define the vector field $\alpha_* X$ on N. Given two smooth vector fields X, Y on M, define the *Lie bracket* vector field [X, Y] and state the corresponding *Jacobi identity*.

Given a smooth vector field X on M, describe without proof what is meant by a local flow $\phi_t : U \to \phi_t U$ determined by X (existence and uniqueness statements for such flows may be assumed). Define what is meant by a smooth *tensor* on M, and for any such tensor T define the *Lie derivative* $L_X T$. Identify (with proofs) $L_X T$ when T = f is a smooth function and T = Y is a smooth vector field.

If $\alpha : M \to N$ is a diffeomorphism and X a smooth vector field on M, with ϕ_t a corresponding local flow, show that the vector field $\alpha_* X$ has a corresponding local flow given by $\alpha \circ \phi_t \circ \alpha^{-1}$. If M = N, deduce that $\alpha_* X = X$ if and only if α and the local flows ϕ_t determined by X always commute.

$\mathbf{2}$

Define the exterior derivative map d on p-forms on a smooth manifold M, showing that it is well-defined globally under your definition. Define what is meant by the de Rham cohomology groups $H_{DR}^{p}(M, \mathbf{R})$ of M. Assuming Green's theorem, show that if Δ is a 2-dimensional disc then $H_{DR}^{1}(\Delta, \mathbf{R}) = 0$. If M is compact of dimension n, state Stokes's theorem without boundary, showing that it defines a linear map $H_{DR}^{n}(M, \mathbf{R}) \to \mathbf{R}$.

Now let G denote a Lie group of dimension n. For $g \in G$, we let $L_g : G \to G$ be given by left-multiplication by g. Show that one can define a non-zero *invariant* n-form ω on G, that is a smooth n-form for which $(L_g)^*\omega = \omega$ for all $g \in G$ (you need not check that the n-form you define is actually smooth). Assume now the fact that for any n-form ω on G, there is an invariant n-form with the same de Rham cohomology class; when G is compact, deduce that $H^n_{DR}(G, \mathbf{R}) = \mathbf{R}$.

Using the results from this question, calculate de Rham cohomology groups $H^1_{DR}(S^2, \mathbf{R})$ and $H^3_{DR}(S^3, \mathbf{R})$.

CAMBRIDGE

3

Given a smooth curve $\gamma : [a, b] \to M$ on a smooth manifold, define what is meant by a smooth vector field V(t) along γ . Given a Koszul connection ∇ on M, explain carefully the concepts of the covariant derivative of V(t) along γ , and V(t) being parallel along γ . Given a tangent vector $V_a \in T_{\gamma(a)}M$, show that there exists a unique parallel vector field V(t) along γ with $V(a) = V_a$. Hence deduce the existence of parallel translation maps $\tau_t : T_{\gamma(a)}M \to T_{\gamma(t)}M$, which are isomorphisms of vector spaces.

Given two Koszul connections ∇ and $\widetilde{\nabla}$, show that there is a tensor Δ on M defined by $\Delta(X,Y) = \nabla_X Y - \widetilde{\nabla}_X Y$, where X and Y are local vector fields. A smooth curve γ is said to be a *geodesic* with respect to a Koszul connection ∇ if the smooth vector field $\dot{\gamma}(t)$ along γ is parallel. Explain briefly why is it true that a geodesic (together with parametrisation) is locally determined by its initial point and tangent vector. Show that the connections ∇ and $\widetilde{\nabla}$ have the same geodesics (with same parametrizations) if and only if $\Delta(v, v) = 0$ for all tangent vectors v.

$\mathbf{4}$

Let M be an embedded smooth submanifold of a smooth manifold N. Explain how a Koszul connection ∇ on N induces a linear connection (which we shall also denote as ∇) on the bundle $TN|_M$, the restriction of TN to M. Suppose \langle , \rangle is a Riemannian metric on N, thus inducing a Riemannian metric on M and determining an orthogonal projection map $\pi : TN|_M \to TM$ of bundles on M. Show that $D = \pi \circ \nabla$ is a Koszul connection on M.

State the defining properties for the Levi–Civita connection on a Riemannian manifold. Suppose now in the above set-up, we take ∇ to be the Levi–Civita connection on N. For local vector fields V, W on M, we set II(V, W) to be the normal component of $\nabla_V W$ with respect to the metric. Assuming the fact that D as defined above (namely where $D_V W$ is the tangential component of $\nabla_V W$) is the Levi–Civita connection on M, show that II induces a symmetric bilinear form on the tangent bundle of M with values in the normal bundle (called the *second fundamental form*). If R denotes the Riemannian curvature tensor on N and \overline{R} the Riemannian curvature tensor on M, for tangent vectors v, w, x, y to M at P, prove that

$$\bar{R}(x, y, v, w) = R(x, y, v, w) + \langle II(v, x), II(w, y) \rangle - \langle II(v, y), II(w, x) \rangle.$$

[You may use the fact that for a connection ∇ on a vector bundle E, with curvature operator denoted by \mathcal{R} , then for any section σ of E,

$$\mathcal{R}(V,W)(\sigma) = \nabla_V \nabla_W \sigma - \nabla_W \nabla_V \sigma - \nabla_{[V,W]} \sigma.$$

END OF PAPER

Part III, Paper 115