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Let n ∈ N be an integer with n > 2. Let α̂ : Z → Z/n be the group homomorphism
given by reduction modulo n, and let α : Z/(n2) → Z/n be the group homomorphism for
which α(1) = 1. Explain briefly why these yield long exact sequences

· · · → H i(X;Z) → H i(X;Z)
α̂

−→ H i(X;Z/n)
β̂

−→ H i+1(X;Z) → · · ·

and

· · · → H i(X;Z/n) → H i(X;Z/(n2))
α

−→ H i(X;Z/n)
β

−→ H i+1(X;Z/n) → · · · .

for homomorphisms β̂ and β as indicated.

(a) Show that for any i > 1 and n, there is a space X for which β : H i(X;Z/n) →
H i+1(X;Z/n) is non-zero.

(b) By relating β and β̂, show that the composite

H i(X;Z/n)
β

−→ H i+1(X;Z/n)
β

−→ H i+2(X;Z/n)

vanishes.

(c) Denote by Hβ∗(X;n) the cohomology groups of the complex {H∗(X;Z/n);β}.
Compute Hβ∗(RP3; 2).

(d) Let M be a closed 3-dimensional manifold and suppose p is prime. What is the
Euler characteristic of the graded vector space Hβ∗(M ; p)? Justify your answer.
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Let Σg denote a closed oriented surface of genus g.

(a) Compute H∗(Σg;Z) as a ring, giving careful statements of any general theorems to
which you appeal.

(b) Show that there is a degree one map Σg → Σh if and only if g > h.

(c) Let Σ∂
h denote the two-dimensional manifold-with-boundary obtained by removing

an open disc from Σh. Let ι : Σ∂
h ⊂ Σg denote the inclusion of an embedded

subsurface-with-boundary. Show that when h > g/2 there is no map r : Σg → Σ∂
h

for which r ◦ ι is equal to the identity of Σ∂
h. Is this bound sharp? Justify your

answer.

[You may assume the following fact from linear algebra: if V is a real vector space equipped

with a non-degenerate skew-symmetric bilinear form 〈·, ·〉, and W ⊂ V is a subspace with

〈u, v〉 = 0 for every u, v ∈ W , then dimR(W ) 6 dimR(V )/2.]

3

For each of the following assertions, provide a proof or a counterexample. General
results from the course may be used without proof if clearly stated.

(a) The cohomology ring of complex projective space H∗(CPn;Z) is Z[x]/(xn+1) for a
generator x of degree 2.

(b) Let m > n > 1, let φ : Sm → Sn and let Xφ be the cell complex obtained by
attaching an (m + 1)-cell to Sn via φ. The ring structure in H∗(Xφ;Z) is always
independent of φ.

(c) Let U , V and W be complex vector spaces, and let φ : U ⊗ V → W be a C-linear
map. If for every non-zero u ∈ U and non-zero v ∈ V the restriction of φ to the
subspaces {u} ⊗ V and U ⊗ {v} is injective, then

dimC(image(φ)) > dimC(U) + dimC(V )− 1.
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Let M be an oriented smooth manifold. Explain how to associate a cohomology
class εY ∈ H∗

ct(M ;Q) to an oriented closed smooth submanifold Y ⊂ M .

Let M and N be closed connected oriented smooth n-dimensional manifolds, and
f, g : M → N be smooth maps. Let f ! : H∗(M ;Q) → H∗(N ;Q) denote (DN )−1 ◦f∗ ◦DM ,
where D• denotes the Poincaré duality isomorphism. Define L(f, g) to be

L(f, g) =
∑

i

(−1)i Trace
(

g∗f ! : H i(M ;Q) → H i(M ;Q)
)

.

Prove that if L(f, g) 6= 0 then there is some m ∈ M for which f(m) = g(m).

Let f : CP2k → CP2k be a map of non-zero degree d 6= 0. By showing

L(f, f) = χ(CP2k) · d

where χ denotes the Euler characteristic, or otherwise, prove that if g : CP2k → CP2k is
homotopic to f , the maps f and g co-incide at some point.

5

Define the Chern classes ci(E) of a complex vector bundle E → X over a space X.
(You may assume that X admits a finite cover by open sets over which E is trivial. You
should make sure that your answer explains why the Chern classes are well-defined.)

State without proof a result relating the Chern classes of the Whitney sum E ⊕ E′

to the Chern classes of the bundles E and E′.

Equip Cn with its standard Hermitian inner product. Let X ⊂ Pn−1 ×Pn−1 denote
the space of pairs of orthogonal complex lines in Cn. Prove that as a ring

H∗(X;Z) = Z[x, y]
/

I I =
〈

xn, xn−1 + xn−2y + xn−3y2 + · · ·+ xyn−2 + yn−1
〉

where x, y have degree 2 and I is the given ideal.
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