

MATHEMATICAL TRIPOS Part III

Wednesday, 1 June, 2016 9:00 am to 12:00 pm

PAPER 114

ALGEBRAIC TOPOLOGY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $n \in \mathbb{N}$ be an integer with $n \ge 2$. Let $\hat{\alpha} : \mathbb{Z} \to \mathbb{Z}/n$ be the group homomorphism given by reduction modulo n, and let $\alpha : \mathbb{Z}/(n^2) \to \mathbb{Z}/n$ be the group homomorphism for which $\alpha(1) = 1$. Explain briefly why these yield long exact sequences

$$\cdots \to H^{i}(X;\mathbb{Z}) \to H^{i}(X;\mathbb{Z}) \xrightarrow{\hat{\alpha}} H^{i}(X;\mathbb{Z}/n) \xrightarrow{\hat{\beta}} H^{i+1}(X;\mathbb{Z}) \to \cdots$$

and

$$\cdots \to H^{i}(X; \mathbb{Z}/n) \to H^{i}(X; \mathbb{Z}/(n^{2})) \xrightarrow{\alpha} H^{i}(X; \mathbb{Z}/n) \xrightarrow{\beta} H^{i+1}(X; \mathbb{Z}/n) \to \cdots$$

for homomorphisms $\hat{\beta}$ and β as indicated.

- (a) Show that for any $i \ge 1$ and n, there is a space X for which $\beta : H^i(X; \mathbb{Z}/n) \to H^{i+1}(X; \mathbb{Z}/n)$ is non-zero.
- (b) By relating β and $\hat{\beta}$, show that the composite

$$H^{i}(X;\mathbb{Z}/n) \xrightarrow{\beta} H^{i+1}(X;\mathbb{Z}/n) \xrightarrow{\beta} H^{i+2}(X;\mathbb{Z}/n)$$

vanishes.

- (c) Denote by $H\beta^*(X;n)$ the cohomology groups of the complex $\{H^*(X;\mathbb{Z}/n);\beta\}$. Compute $H\beta^*(\mathbb{RP}^3;2)$.
- (d) Let M be a closed 3-dimensional manifold and suppose p is prime. What is the Euler characteristic of the graded vector space $H\beta^*(M;p)$? Justify your answer.

UNIVERSITY OF CAMBRIDGE

 $\mathbf{2}$

Let Σ_g denote a closed oriented surface of genus g.

- (a) Compute $H^*(\Sigma_g; \mathbb{Z})$ as a ring, giving careful statements of any general theorems to which you appeal.
- (b) Show that there is a degree one map $\Sigma_g \to \Sigma_h$ if and only if $g \ge h$.
- (c) Let Σ_h^∂ denote the two-dimensional manifold-with-boundary obtained by removing an open disc from Σ_h . Let $\iota : \Sigma_h^\partial \subset \Sigma_g$ denote the inclusion of an embedded subsurface-with-boundary. Show that when h > g/2 there is no map $r : \Sigma_g \to \Sigma_h^\partial$ for which $r \circ \iota$ is equal to the identity of Σ_h^∂ . Is this bound sharp? Justify your answer.

[You may assume the following fact from linear algebra: if V is a real vector space equipped with a non-degenerate skew-symmetric bilinear form $\langle \cdot, \cdot \rangle$, and $W \subset V$ is a subspace with $\langle u, v \rangle = 0$ for every $u, v \in W$, then $\dim_{\mathbb{R}}(W) \leq \dim_{\mathbb{R}}(V)/2$.]

3

For each of the following assertions, provide a proof or a counterexample. General results from the course may be used without proof if clearly stated.

- (a) The cohomology ring of complex projective space $H^*(\mathbb{CP}^n;\mathbb{Z})$ is $\mathbb{Z}[x]/(x^{n+1})$ for a generator x of degree 2.
- (b) Let m > n > 1, let $\phi : S^m \to S^n$ and let X_{ϕ} be the cell complex obtained by attaching an (m+1)-cell to S^n via ϕ . The ring structure in $H^*(X_{\phi};\mathbb{Z})$ is always independent of ϕ .
- (c) Let U, V and W be complex vector spaces, and let $\phi : U \otimes V \to W$ be a \mathbb{C} -linear map. If for every non-zero $u \in U$ and non-zero $v \in V$ the restriction of ϕ to the subspaces $\{u\} \otimes V$ and $U \otimes \{v\}$ is injective, then

 $\dim_{\mathbb{C}}(\operatorname{image}(\phi)) \ge \dim_{\mathbb{C}}(U) + \dim_{\mathbb{C}}(V) - 1.$

UNIVERSITY OF

Let M be an oriented smooth manifold. Explain how to associate a cohomology class $\varepsilon_Y \in H^*_{ct}(M; \mathbb{Q})$ to an oriented closed smooth submanifold $Y \subset M$.

4

Let M and N be closed connected oriented smooth n-dimensional manifolds, and $f, g: M \to N$ be smooth maps. Let $f^!: H^*(M; \mathbb{Q}) \to H^*(N; \mathbb{Q})$ denote $(D_N)^{-1} \circ f_* \circ D_M$, where D_{\bullet} denotes the Poincaré duality isomorphism. Define L(f, g) to be

$$L(f,g) = \sum_{i} (-1)^{i} \operatorname{Trace} \left(g^{*} f^{!} : H^{i}(M;\mathbb{Q}) \to H^{i}(M;\mathbb{Q}) \right).$$

Prove that if $L(f,g) \neq 0$ then there is some $m \in M$ for which f(m) = g(m).

Let $f: \mathbb{CP}^{2k} \to \mathbb{CP}^{2k}$ be a map of non-zero degree $d \neq 0$. By showing

$$L(f,f) = \chi(\mathbb{CP}^{2k}) \cdot d$$

where χ denotes the Euler characteristic, or otherwise, prove that if $g : \mathbb{CP}^{2k} \to \mathbb{CP}^{2k}$ is homotopic to f, the maps f and g co-incide at some point.

$\mathbf{5}$

Define the Chern classes $c_i(E)$ of a complex vector bundle $E \to X$ over a space X. (You may assume that X admits a finite cover by open sets over which E is trivial. You should make sure that your answer explains why the Chern classes are well-defined.)

State without proof a result relating the Chern classes of the Whitney sum $E \oplus E'$ to the Chern classes of the bundles E and E'.

Equip \mathbb{C}^n with its standard Hermitian inner product. Let $X \subset \mathbb{P}^{n-1} \times \mathbb{P}^{n-1}$ denote the space of pairs of orthogonal complex lines in \mathbb{C}^n . Prove that as a ring

$$H^*(X;\mathbb{Z}) = \mathbb{Z}[x,y]/I \qquad I = \langle x^n, \ x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1} \rangle$$

where x, y have degree 2 and I is the given ideal.

END OF PAPER

 $[\]mathbf{4}$