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(i) Let A be a ring. Give the definitions of X = Spec A, the Zariski topology on X,
and the sheaf OX . Show that for any p ∈ X the stalk (OX)p is isomorphic to Ap as rings
(you do not need to show this is an isomorphism of local rings).

(ii) Let k be a field, let A2

k = Spec k[t1, t2], and let X be the open subscheme
A2

k \ 〈t1, t2〉. Show that X is not an affine scheme.

(iii) Let X = Proj R[t0, t1, t2]/〈t
2

0
+ t2

1
+ t2

2
〉. Show that X is not isomorphic to P1

R.

2

(i) Give the definition of the fibred product of schemes, and give a sketch of its
construction. Give an example of integral schemes X,Y, S and appropriate morphisms
such that X ×S Y is not irreducible.

(ii) Let f : X → Y be a morphism of schemes, y ∈ Y , and Xy be the fibre of f
over y. Show that Xy as a topological space is homeomorphic to f−1{y} with the induced
topology as a subset of X.

3

(i) Let S =
⊕

d>0
Sd be a graded ring which is generated by the elements of S1 as

an S0-algebra, and let X = Proj S. Assume M and N are graded S-modules. Prove that

OX(n) is an invertible sheaf and that M̃ ⊗OX
Ñ ≃ M̃ ⊗S N .

(ii) Let k be a field and let X = Pn
k . Show that there is a Cartier divisor D on X

such that OX(D) ≃ OX(1).

(iii) Let X be a Noetherian scheme and let 0 → F → G → H → 0 be a short exact
sequence of coherent sheaves on X. Give a proof or a counter-example (with justifications)
for each of the following statements:

• If F and G are locally free, then H is locally free.

• If F and H are locally free, then G is locally free.
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4 (i) Let (X,OX ) be a ringed space. Define what is meant by a flasque sheaf on X.
Prove that if I is an OX -module which is injective in the category of OX-modules, then
I is flasque.

(ii) Let X be a closed subset of a topological space Y and f : X → Y the inclusion
map. Prove that for any sheaf F on X, we have H i(Y, f∗F) ≃ H i(X,F) for every i.

(iii) Define what is meant by a skyscraper sheaf on a topological space, and calculate
its cohomology groups.

5

(i) Let k be a field, f : X → Pn
k be a closed immersion, and F be a coherent sheaf

on X. Moreover, let OX(d) = f∗OPn

k
(d) and put F(d) = F ⊗OX

OX(d). Prove that
Hp(X,F(d)) = 0 for every p > 0 and d ≫ 0. [You may assume f∗(F(d)) ≃ (f∗F)(d).]

(ii) Let k be a field and let X = Pn
k where n > 0. Find a coherent sheaf F on X

such that
dimk H

0(X,F) 6= dimk H
n(X,F∨(−n− 1))

where F∨ = HomOX
(F ,OX ).

(iii) Let X be the closed subscheme of P3

C = Proj C[t0, . . . , t3] defined by the ideal
〈t2 − t3, t

3

1
+ t0t

2

2
〉. Calculate the Hilbert polynomial ΦOX

of OX .
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