MATHEMATICAL TRIPOS Part III

Tuesday, 31 May, 2016 $-1{:}30~\mathrm{pm}$ to $3{:}30~\mathrm{pm}$

PAPER 112

PROBABILISTIC COMBINATORICS AND ITS APPLICATIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(i) State and prove the Prékopa–Leindler inequality.

(ii) Deduce the Brunn-Minkowski inequality (in any form).

(iii) Let $A, B \subset \mathbb{R}^n$ be non-empty open subsets. Is $\lambda(A + tB)$ an increasing function of t for t > 0?

 $\mathbf{2}$

For $n \ge 2$, let $B^n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$ and $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit ball and unit sphere in \mathbb{R}^n centred at the origin. Write $v_n = \operatorname{Vol}_n B^n$ for the 'volume' of B^n and $s_{n-1} = \operatorname{Vol}_{n-1} S^{n-1}$ for the 'surface area' of S^{n-1} , and recall that

$$s_{n-1} = nv_n$$
 and $\sqrt{\frac{n}{2\pi}} < v_{n-1}/v_n < \sqrt{\frac{n+1}{2\pi}}.$

For $0 < \rho < \pi/2$ write D_{ρ} for the spherical cap of spherical radius ρ on S^{n-1} centred at $(1, 0, \dots, 0)$. Recall that

$$\operatorname{Vol}_{n-1}(D_{\rho}) \ge (\sin \rho)^{n-1} v_{n-1}.$$

[This can be seen by projecting D_{ρ} into the affine hyperplane $\{x \in \mathbb{R}^n : x_1 = 1\}$.]

(i) Show that for $\pi/4 \leq \rho < \pi/2$ we have

$$\operatorname{Vol}_{n-1}(D_{\rho}) \leqslant (\sin \rho)^n s_{n-1}.$$
(1)

(ii) Prove the stronger result that (1) holds if $\sin \rho \ge 1/\sqrt{n}$.

(iii) Let $r \ge \sqrt{2}$ and $P \subset \mathbb{R}^n$ a convex polyhedron such that

$$\frac{1}{r}B^n \subset P \subset B^n.$$
(2)

Show that P has at least $e^{n/(2r^2)}$ facets.

(iv) Show that there is a convex polyhedron in \mathbb{R}^n with at most 3^n facets such that (2) is satisfied with r = 2.

Part III, Paper 112

UNIVERSITY OF

3

i) State Talagrand's Inequality, introducing the concepts you need.

(ii) Let X_n be a set of *n* random points in the square $[0,1]^2$, and let $Y_n = TS(X_n)$ be the length of a Travelling Salesman Tour through X_n . Prove that

3

$$Y_n \leq 2\sqrt{n}$$
 and $\mathbb{E}(Y_n) \geq \sqrt{n}/5.$

(iii) Show that for t > 0 we have

$$\mathbb{P}(|Y_n - M_{Y_n}| \ge t) \le 4 \ e^{-t^2/64},$$

where M_{Y_n} is the median of Y_n .

The results your proof needs should be stated precisely.

4

Let $k = k(n) = \lfloor \log \log n \rfloor$ and $p = p(n) = n^{-2/k}$. Show that whp the binomial random graph $G_{n,p}$ has clique number k, i.e., as $n \to \infty$,

$$\mathbb{P}(G_{n,p} \text{ contains a complete graph } K_k) = 1 + o(1),$$
 (1)

and

$$\mathbb{P}(G_{n,p} \text{ contains a complete graph } K_{k+1}) = o(1).$$
 (2)

END OF PAPER