MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2016 9:00 am to 11:00 am

PAPER 111

TECHNIQUES IN NON-ABELIAN ADDITIVE COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Prove that there exists a constant C such that for every $n \in \mathbb{N}$, if A is a subset of \mathbb{F}_3^n of density at least Cn^{-1} , then A contains distinct elements x, y, z with x + y + z = 0. [You may assume the basic definitions and results of Fourier analysis on finite Abelian groups.]

2 Let G be a finite bipartite graph, regular on each side, of density γ , with vertex sets X and Y. Prove that the following statements about G are equivalent, in the sense that if the *i*th statement holds with constant $c_i > 0$, then the *j*th statement holds for some constant $c_j > 0$ that is independent of |X| and |Y| and tends to zero with c_i .

(i) $|\mathbb{E}_{x,y}G(x,y)A(x)B(y) - \alpha\beta\gamma| \leq c_1$ for every pair of sets $A \subset X$ and $B \subset Y$ of densities α and β , respectively.

(ii) $||G||_{\square}^4 \leq \gamma^4 + c_2.$

(iii) The second largest singular value of the linear map θ_G , defined by the formula $(\theta_G f)(x) = \mathbb{E}_y G(x, y) f(y)$, is at most c_3 .

3 Assuming any representation theory you might need, develop the basic theory of Fourier analysis for scalar-valued functions on finite groups. Use it to prove that if G has no non-trivial representation of dimension less than m, and A, B and C are subsets of G with $|A||B||C| > m^{-1}|G|^3$, then there exist $x \in A$, $y \in B$ and $z \in C$ with xy = z.

UNIVERSITY OF

4 Let G be a finite group and let $f: G \to M_n(\mathbb{C})$ be a function such that $||f(x)||_{\text{op}} \leq 1^{-1}$ for every $x \in G$, and

$$\mathbb{E}_{xy^{-1}zw^{-1}=e} \operatorname{tr}(f(x)f(y)^*f(z)f(w)^*) \ge cn.$$

Prove that there exist matrices $U(1), \ldots, U(r)$ and $V(1), \ldots, V(r)$ and irreducible unitary representations ρ_1, \ldots, ρ_r with the following properties. (Write n_i for the dimension of the representation ρ_i .)

(i) For each p, U(p) and V(p) are $n \times n_p$ matrices.

(ii) $m = \sum_{p=1}^{r} n_p \in [cn/2, 2n/c].$

(iii) For each p, $\mathbb{E}_x f(x)U(p)\rho_p(x)^* = \lambda_p V(p)$ for some real number λ_p that lies between $(c/2)^{1/2}$ and 1.

(iv) $\langle U(p), U(q) \rangle = \langle V(p), V(q) \rangle = n_p \delta_{pq}$ for each p and q with $\rho_p = \rho_q$.

Let U be the $n \times m$ matrix $(U(1)| \dots |U(r))$ and for each x let P(x) be the block-diagonal matrix $\rho_1(x) \oplus \dots \oplus \rho_r(x)$. Prove that

$$\mathbb{E}_{x} \| UP(x)^{*}b \|_{2}^{2} = \| b \|_{2}^{2}$$

for every $b \in \mathbb{C}^m$. [You may assume any results from representation theory that you might need, provided that you state them clearly.]

END OF PAPER