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1

Prove that there exists a constant C such that for every n ∈ N, if A is a subset of Fn
3

of density at least Cn−1, then A contains distinct elements x, y, z with x+y+z = 0. [You
may assume the basic definitions and results of Fourier analysis on finite Abelian groups.]

2 Let G be a finite bipartite graph, regular on each side, of density γ, with vertex
sets X and Y . Prove that the following statements about G are equivalent, in the sense
that if the ith statement holds with constant ci > 0, then the jth statement holds for
some constant cj > 0 that is independent of |X| and |Y | and tends to zero with ci.

(i) |Ex,yG(x, y)A(x)B(y) − αβγ| 6 c1 for every pair of sets A ⊂ X and B ⊂ Y of
densities α and β, respectively.

(ii) ‖G‖4� 6 γ4 + c2.

(iii) The second largest singular value of the linear map θG, defined by the formula
(θGf)(x) = EyG(x, y)f(y), is at most c3.

3 Assuming any representation theory you might need, develop the basic theory of
Fourier analysis for scalar-valued functions on finite groups. Use it to prove that if G has
no non-trivial representation of dimension less than m, and A, B and C are subsets of
G with |A||B||C| > m−1|G|3, then there exist x ∈ A, y ∈ B and z ∈ C with xy = z.

Part III, Paper 111



3

4 Let G be a finite group and let f : G →Mn(C) be a function such that ‖f(x)‖op 6 1
for every x ∈ G, and

Exy−1zw−1=etr(f(x)f(y)
∗f(z)f(w)∗) > cn.

Prove that there exist matrices U(1), . . . , U(r) and V (1), . . . , V (r) and irreducible unitary
representations ρ1, . . . , ρr with the following properties. (Write ni for the dimension of
the representation ρi.)

(i) For each p, U(p) and V (p) are n× np matrices.

(ii) m =
∑r

p=1 np ∈ [cn/2, 2n/c].

(iii) For each p, Exf(x)U(p)ρp(x)
∗ = λpV (p) for some real number λp that lies

between (c/2)1/2 and 1.

(iv) 〈U(p), U(q)〉 = 〈V (p), V (q)〉 = npδpq for each p and q with ρp = ρq.

Let U be the n×m matrix (U(1)| . . . |U(r)) and for each x let P (x) be the block-diagonal
matrix ρ1(x)⊕ · · · ⊕ ρr(x). Prove that

Ex‖UP (x)∗b‖22 = ‖b‖22

for every b ∈ C
m. [You may assume any results from representation theory that you might

need, provided that you state them clearly.]

END OF PAPER

Part III, Paper 111


