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1

State the Erdős-Stone theorem.

Let t, r ∈ N be given and let (Gn) be a sequence of graphs, such that Gn has order n
and size (1−1/r+o(1))

(n
2

)

Show that if Kr+1(t) is not a subgraph of Gn then Gn contains
an r-partite subgraph of minimum degree (1− 1/r + o(1))n.

Let F be a fixed graph with χ(F ) = r + 1. Let (Hn) be a sequence of graphs,
such that Hn has order n, Hn does not contain F , and e(Hn) = ex(n, F ). Show that
δ(Hn) = (1− 1/r + o(1))n.

Show further that, if F has a vertex v such that χ(F − v) = r, then ∆(Hn) =
(1− 1/r + o(1))n.

2

Define an ǫ-uniform pair.

Let λ > 0 and r ∈ N. Let G be a graph containing disjoint vertex sets V1, . . . , Vr,
such that |Vi| = n, 1 6 i 6 r. Show that there exists η > 0 and δ > 0 such that, if (Vi, Vj)
is η-uniform and d(Vi, Vj) > λ for 1 6 i < j 6 r, and if n is large, then G contains at least
δnr copies of Kr.

State Szemerédi’s Regularity Lemma.

Deduce that, given ǫ > 0, there exists δ > 0 such that, for n sufficiently large, if H
is a graph of order n containing fewer than δnr copies of Kr, then there is some set of at
most ǫn2 edges of H, whose removal leaves a graph containing no Kr.
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Let t,N ∈ N, t > 3 and let r =
(t
2

)

. Let G(N,Kt) be the r-uniform hypergraph with

vertex set V = [N ](2) and edge set E = {[T ](2) : T ∈ [N ](t)}. (Here we use the customary
notation [n] = {1, . . . , n} and [n](k) = {X ⊂ [n] : |X| = k}.)

Show that each vertex of G(N,Kt) has degree d =
(N−2
t−2

)

.

Show moreover that, given a subset σ ⊂ V , where 2 6 |σ| 6 r, then either d(σ) = 0
or d(σ) =

(N−v
t−v

)

, where v is some number depending on σ that satisfies 3 6 v 6 t and

|σ| 6
(v
2

)

.

Derive the inequality 2(|σ|−1) 6 (v−2)(t+1). Deduce that, for any constant c, there
is a constant c′ such that, if τ = c′N−2/(t+1) and N is large enough, then d(σ) 6 cdτ |σ|−1

holds for all σ.

What is meant by a set of containers for G(N,Kt)? State a theorem about the
existence of such a set, in which each container has fewer than ǫe(G(N,Kt)) edges.

Deduce that the number of Kt-free graphs on vertex set [N ] is 2(1−1/(t−1)+o(1))(N
2
).

[If you use any additional results in your argument, you need not prove them, but state
them clearly.]

4

Let G be an r-uniform hypergraph with vertex set [n] and average degree d. Define
the degree measure µ(S) of a subset S ⊂ V (G). Prove that

(

µ(S)− 1 +
1

r

)

nd 6 e(G[S]) 6 µ(S)
nd

r
.

State a theorem giving a sufficient condition for the existence of containers for G of
measure at most 1− c.

State the golden rule paradigm, and explain how it can be used to produce
containers. State an explicit algorithm which produces containers satisfying the theorem.
Your algorithm should involve s-uniform multigraphs with edge multisets Ps, as well as
parameters τ and δ such that d(σ) 6 δdτ |σ|−1 for σ ⊂ [n], |σ| > 2.

Writing ds(u) for the degree in Ps of a vertex u, show that

∑

u∈U

ds(u) 6 τ r−snd(µ(U) + rδ)

holds for all U ⊂ [n].
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Let G(n, ℓ, r) be the ℓ-uniform hypergraph with n vertices, whose vertex set is split
into r classes V1, . . . , Vr with |V1| 6 |V2| 6 · · · 6 |Vr| 6 |V1|+1, and whose edges are those
ℓ-sets e for which there is an index j such that

∑k
i=1 |e ∩ Vj+i| > k − 1, for 1 6 k 6 ℓ− 1.

(Subscripts are taken modulo r.)

Prove that every set of r + 1 vertices of G(n, ℓ, r) contains an edge.

Prove that (G(n, ℓ, r) has (1 + o(1))
(

ℓ−1
r

)ℓ−1 (n
ℓ

)

edges.

Deduce that the limiting extremal density π(Kℓ
r) of Kℓ

r satisfies π(Kℓ
r) > 1 −

(

ℓ−1
r−1

)ℓ−1
. State a corresponding upper bound and explain, without performing detailed

calculations, how it is proved.
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