MATHEMATICAL TRIPOS Part III

Friday, 27 May, 2016 $\,$ 9:00 am to 11:00 am $\,$

PAPER 110

EXTREMAL GRAPH THEORY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State the Erdős-Stone theorem.

Let $t, r \in \mathbb{N}$ be given and let (G_n) be a sequence of graphs, such that G_n has order n and size $(1-1/r+o(1))\binom{n}{2}$ Show that if $K_{r+1}(t)$ is not a subgraph of G_n then G_n contains an r-partite subgraph of minimum degree (1-1/r+o(1))n.

Let F be a fixed graph with $\chi(F) = r + 1$. Let (H_n) be a sequence of graphs, such that H_n has order n, H_n does not contain F, and $e(H_n) = ex(n, F)$. Show that $\delta(H_n) = (1 - 1/r + o(1))n$.

Show further that, if F has a vertex v such that $\chi(F - v) = r$, then $\Delta(H_n) = (1 - 1/r + o(1))n$.

 $\mathbf{2}$

Define an ϵ -uniform pair.

Let $\lambda > 0$ and $r \in \mathbb{N}$. Let G be a graph containing disjoint vertex sets V_1, \ldots, V_r , such that $|V_i| = n, 1 \leq i \leq r$. Show that there exists $\eta > 0$ and $\delta > 0$ such that, if (V_i, V_j) is η -uniform and $d(V_i, V_j) \geq \lambda$ for $1 \leq i < j \leq r$, and if n is large, then G contains at least δn^r copies of K_r .

State Szemerédi's Regularity Lemma.

Deduce that, given $\epsilon > 0$, there exists $\delta > 0$ such that, for *n* sufficiently large, if *H* is a graph of order *n* containing fewer than δn^r copies of K_r , then there is some set of at most ϵn^2 edges of *H*, whose removal leaves a graph containing no K_r .

UNIVERSITY OF

3

Let $t, N \in \mathbb{N}, t \ge 3$ and let $r = {t \choose 2}$. Let $G(N, K_t)$ be the *r*-uniform hypergraph with vertex set $V = [N]^{(2)}$ and edge set $E = \{[T]^{(2)} : T \in [N]^{(t)}\}$. (Here we use the customary notation $[n] = \{1, \ldots, n\}$ and $[n]^{(k)} = \{X \subset [n] : |X| = k\}$.)

Show that each vertex of $G(N, K_t)$ has degree $d = \binom{N-2}{t-2}$.

Show moreover that, given a subset $\sigma \subset V$, where $2 \leq |\sigma| \leq r$, then either $d(\sigma) = 0$ or $d(\sigma) = \binom{N-v}{t-v}$, where v is some number depending on σ that satisfies $3 \leq v \leq t$ and $|\sigma| \leq \binom{v}{2}$.

Derive the inequality $2(|\sigma|-1) \leq (v-2)(t+1)$. Deduce that, for any constant c, there is a constant c' such that, if $\tau = c' N^{-2/(t+1)}$ and N is large enough, then $d(\sigma) \leq c d\tau^{|\sigma|-1}$ holds for all σ .

What is meant by a set of containers for $G(N, K_t)$? State a theorem about the existence of such a set, in which each container has fewer than $\epsilon e(G(N, K_t))$ edges.

Deduce that the number of K_t -free graphs on vertex set [N] is $2^{(1-1/(t-1)+o(1))\binom{N}{2}}$. [If you use any additional results in your argument, you need not prove them, but state them clearly.]

$\mathbf{4}$

Let G be an r-uniform hypergraph with vertex set [n] and average degree d. Define the degree measure $\mu(S)$ of a subset $S \subset V(G)$. Prove that

$$\left(\mu(S) - 1 + \frac{1}{r}\right) nd \leqslant e(G[S]) \leqslant \mu(S) \frac{nd}{r}.$$

State a theorem giving a sufficient condition for the existence of containers for G of measure at most 1 - c.

State the golden rule paradigm, and explain how it can be used to produce containers. State an explicit algorithm which produces containers satisfying the theorem. Your algorithm should involve s-uniform multigraphs with edge multisets P_s , as well as parameters τ and δ such that $d(\sigma) \leq \delta d\tau^{|\sigma|-1}$ for $\sigma \subset [n], |\sigma| \geq 2$.

Writing $d_s(u)$ for the degree in P_s of a vertex u, show that

$$\sum_{u \in U} d_s(u) \leqslant \tau^{r-s} n d(\mu(U) + r\delta)$$

holds for all $U \subset [n]$.

Part III, Paper 110

UNIVERSITY OF

 $\mathbf{5}$

Let $G(n, \ell, r)$ be the ℓ -uniform hypergraph with n vertices, whose vertex set is split into r classes V_1, \ldots, V_r with $|V_1| \leq |V_2| \leq \cdots \leq |V_r| \leq |V_1| + 1$, and whose edges are those ℓ -sets e for which there is an index j such that $\sum_{i=1}^k |e \cap V_{j+i}| \geq k-1$, for $1 \leq k \leq \ell - 1$. (Subscripts are taken modulo r.)

Prove that every set of r+1 vertices of $G(n, \ell, r)$ contains an edge.

Prove that $(G(n, \ell, r)$ has $(1 + o(1)) \left(\frac{\ell-1}{r}\right)^{\ell-1} {n \choose \ell}$ edges.

Deduce that the limiting extremal density $\pi(K_r^{\ell})$ of K_r^{ℓ} satisfies $\pi(K_r^{\ell}) \ge 1 - \left(\frac{\ell-1}{r-1}\right)^{\ell-1}$. State a corresponding upper bound and explain, without performing detailed calculations, how it is proved.

END OF PAPER