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1

State and prove the Local LYM inequality, and deduce the LYM inequality. Which

antichains in P([n]) have size exactly
(

n
⌊n/2⌋

)

?

Let A1, . . . , Ak and B1, . . . , Bk be subsets of [n] such that Ai meets Bj if and only

if i 6= j. Prove that
∑

i

(|Ai|+|Bi|
|Ai|

)−1

6 1.

[Hint: For each i, consider the permutations of [n] for which all elements of Ai come

before all elements of Bi.]

Use this result to give another proof of the LYM inequality.

2

State the vertex-isoperimetric inequality in the discrete cube (Harper’s theorem).

Explain carefully how the Kruskal-Katona theorem may be deduced from Harper’s

theorem.

State the Erdős-Ko-Rado theorem, and give a proof of it using the Kruskal-Katona

theorem.

A family A ⊂ [k]n is called intersecting if for any x, y ∈ A we have xi = yi for some

i. How large can an intersecting family in [k]n be?

A family A ⊂ [k]n is called weakly intersecting if for any x, y ∈ A we have xi, yi > 1

for some i. Show that, for n odd, the largest weakly intersecting family in [k]n is the

family consisting of all x with xi > 1 for more than n/2 values of i.

[Hint: For each x ∈ A, consider {i ∈ [n] : xi > 1}.]

3

State and prove the edge-isoperimetric inequality in the discrete cube. Deduce that,

among families A ⊂ Qn with |A| given, the number of edges contained in A is maximised

when A is an initial segment of the binary ordering.

[Here as usual we say that an edge xy is contained in A if x, y ∈ A.]

A face of Qn is a 4-cycle (equivalently, it consists of four points of the form

x, x∪{i}, x∪{j}, x∪{i, j}, where i, j are distinct elements not belonging to x). Prove that,

among families A ⊂ Qn with |A| given, the number of faces contained in A is maximised

when A is an initial segment of the binary ordering.

[Hint: Use compressions as in the proof of the edge-isoperimetric inequality.]
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4

State and prove the Frankl-Wilson theorem (on modular intersections).

Let A,B ⊂ P([n]) be families of sets such that |x ∩ y| is even for every x ∈ A and

y ∈ B. By considering the characteristic vectors (indicator functions) of the points of A

and B, prove that |A||B| 6 2n.

Show that if instead we have |x ∩ y| odd for every x ∈ A and y ∈ B then

|A||B| 6 2n+1.
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