

MATHEMATICAL TRIPOS Part III

Monday, 30 May, 2016 1:30 pm to 3:30 pm

PAPER 109

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

State and prove the Local LYM inequality, and deduce the LYM inequality. Which antichains in $\mathcal{P}([n])$ have size exactly $\binom{n}{\lfloor n/2 \rfloor}$?

Let A_1, \ldots, A_k and B_1, \ldots, B_k be subsets of [n] such that A_i meets B_j if and only if $i \neq j$. Prove that $\sum_i {\binom{|A_i| + |B_i|}{|A_i|}}^{-1} \leq 1$.

[*Hint:* For each *i*, consider the permutations of [n] for which all elements of A_i come before all elements of B_i .]

Use this result to give another proof of the LYM inequality.

$\mathbf{2}$

State the vertex-isoperimetric inequality in the discrete cube (Harper's theorem). Explain carefully how the Kruskal-Katona theorem may be deduced from Harper's theorem.

State the Erdős-Ko-Rado theorem, and give a proof of it using the Kruskal-Katona theorem.

A family $A \subset [k]^n$ is called *intersecting* if for any $x, y \in A$ we have $x_i = y_i$ for some *i*. How large can an intersecting family in $[k]^n$ be?

A family $A \subset [k]^n$ is called *weakly intersecting* if for any $x, y \in A$ we have $x_i, y_i > 1$ for some *i*. Show that, for *n* odd, the largest weakly intersecting family in $[k]^n$ is the family consisting of all *x* with $x_i > 1$ for more than n/2 values of *i*.

[*Hint:* For each $x \in A$, consider $\{i \in [n] : x_i > 1\}$.]

3

State and prove the edge-isoperimetric inequality in the discrete cube. Deduce that, among families $A \subset Q_n$ with |A| given, the number of edges contained in A is maximised when A is an initial segment of the binary ordering.

[Here as usual we say that an edge xy is *contained* in A if $x, y \in A$.]

A face of Q_n is a 4-cycle (equivalently, it consists of four points of the form $x, x \cup \{i\}, x \cup \{j\}, x \cup \{i, j\}$, where i, j are distinct elements not belonging to x). Prove that, among families $A \subset Q_n$ with |A| given, the number of faces contained in A is maximised when A is an initial segment of the binary ordering.

[*Hint: Use compressions as in the proof of the edge-isoperimetric inequality.*]

UNIVERSITY OF

 $\mathbf{4}$

State and prove the Frankl-Wilson theorem (on modular intersections).

Let $A, B \subset \mathcal{P}([n])$ be families of sets such that $|x \cap y|$ is even for every $x \in A$ and $y \in B$. By considering the characteristic vectors (indicator functions) of the points of A and B, prove that $|A||B| \leq 2^n$.

Show that if instead we have $|x \cap y|$ odd for every $x \in A$ and $y \in B$ then

 $|A||B| \leqslant 2^{n+1}.$

END OF PAPER