

MATHEMATICAL TRIPOS Part III

Thursday, 2 June, 2016 1:30 pm to 4:30 pm

PAPER 108

TOPICS IN ERGODIC THEORY

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State and prove the maximal ergodic theorem.

State the *pointwise ergodic theorem*.

Let (X, \mathcal{B}, μ, T) be an ergodic measure preserving system. Let $f : X \to \mathbb{R}_{\geq 0}$ be a measurable function. Prove that

 $\mathbf{2}$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(T^n x) = \int f d\mu.$$

for μ -almost all x. Note that $\int f d\mu$ may be infinite.

[You may use without proof the L^1 version of the mean ergodic theorem, as well as the pointwise ergodic theorem.]

$\mathbf{2}$

State Szemerédi's theorem.

State *Furstenberg's multiple recurrence theorem*, and prove that it implies Szemerédi's theorem.

[If you construct a measure preserving system in your proof, you may omit the proof of the measure preserving property.]

Prove the multiple recurrence theorem for the circle rotation.

3

Define *unique ergodicity*.

Prove that irrational circle rotations are uniquely ergodic.

Let $\alpha \in (0,1)$ be an irrational number. Consider the map $T: \mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$ defined by

 $T(x,y) = \{x + \alpha \mod 1, x + y \mod 1\}.$

Prove that the measure preserving system $(\mathbb{R}^2/\mathbb{Z}^2, \mathcal{B}, m_2, T)$ is ergodic, where \mathcal{B} is the Borel σ -algebra and m_2 is the Lebesgue measure.

[You do not need to prove that m_2 is T-invariant.]

Prove that the system $(\mathbb{R}^2/\mathbb{Z}^2, T)$ is uniquely ergodic.

[You may NOT use without proof Furstenberg's theorem on unique ergodicity of skew products, but you may use without proof the basic properties of generic points.]

Part III, Paper 108

3

END OF PAPER

Part III, Paper 108