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1

State and prove the maximal ergodic theorem.

State the pointwise ergodic theorem.

Let (X,B, µ, T ) be an ergodic measure preserving system. Let f : X → R>0 be a
measurable function. Prove that

lim
N→∞

1

N

N−1∑
n=0

f(T nx) =

∫
fdµ.

for µ-almost all x. Note that
∫
fdµ may be infinite.

[You may use without proof the L1 version of the mean ergodic theorem, as well as
the pointwise ergodic theorem.]

2

State Szemerédi’s theorem.

State Furstenberg’s multiple recurrence theorem, and prove that it implies Sze-
merédi’s theorem.

[If you construct a measure preserving system in your proof, you may omit the proof
of the measure preserving property.]

Prove the multiple recurrence theorem for the circle rotation.

3

Define unique ergodicity.

Prove that irrational circle rotations are uniquely ergodic.

Let α ∈ (0, 1) be an irrational number. Consider the map T : R2/Z2 → R
2/Z2

defined by
T (x, y) = {x+ α mod 1, x+ y mod 1}.

Prove that the measure preserving system (R2/Z2,B,m2, T ) is ergodic, where B is the
Borel σ-algebra and m2 is the Lebesgue measure.

[You do not need to prove that m2 is T -invariant.]

Prove that the system (R2/Z2, T ) is uniquely ergodic.

[ You may NOT use without proof Furstenberg’s theorem on unique ergodicity of
skew products, but you may use without proof the basic properties of generic points.]
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