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State and prove the Hopf boundary point lemma for v : Q U {y} — R with
u € C*(Q) N C%Q U {y}) solving Lu = a“Djju + b'D;u > 0 in . Be sure to state
any extra hypothesis needed.

[You may use the comparison principle concerning functions f, g satisfying Lf > Lg
(as proven in class) without proof.]

Let © C R? be an open domain satisfying an exterior cone condition, i.e. for every
ro € ON) there exists a solid cone C' in R? with vertex at x¢ such that C N Q = {z¢}.
Consider the Dirichlet problem

(1)

Au=f inQ
u=¢ ond’

where f is a bounded function of class C%*(Q), for a given p € (0,1), and ¢ € CO(99).

(i) Show that at each zp € 02 there exists a barrier determined by a function of the
form g(r,0) = r"h(#), where r = |z — xg| and 6 is the angle between the vector
x — zg and the axis of the exterior cone. In other words find g of the above form
satisfying the following conditions: g < 0 in €, g = 0 at g and Ag > § > 0 in ,
for a positive ¢ (allowed to depend on 2).
Hint: Set polar coordinates centred at zg with § = 0 corresponding to the
axis of the cone and let 0 < a < 7 be the opening angle of the cone, i.e.
C ={(r,0) € [0,00) X [-m,7] : —a < 6 < a}. You may use without proof the
fact that the Laplacian in polar coordinates of a function g(r,#) has the expression

9?2 10, 1 92

Ag=Gh+ 75 + 2o

(ii) Give the defining expression of the Perron solution u to the Dirichlet problem (1)
(you are not required to prove that u € C? or u solves Au = f).

(iii) Prove that u is continuous in Q and it satisfies the boundary condition u|sn = ¢.

Hint: employ the barrier function constructed in part (i). You may use without
proof the fact that, given a subfunction v, and a superfunction ug, we have u; < usg.

(iv) Show that the Dirichlet problem (1) admits a unique solution in C?(Q) N C°(2)
(you may use any result proven throughout the course).
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Let n > 2. Recall that

B :={x e R": |z| < 7,2, > 0}

T

Sy :={z e R", |z| < r,a, = 0}.
(a) Suppose that u € C3(By) satisfies

{Au:f in Bf

u=>0 on S

for f € CY(By). Prove that

lullwzegry < € (lullwragss) + 1120 )
for some constant C' = C(n) € (0,00). Hint: First establish

n—1 n
S5 [ i <0 (linaqagy + 1)
=1 j=1

(b) Suppose that u € C3(B;") satisfies

{Au:f in Bf

u=¢ on.Sy

for f € CY(BF) and ¢ € C3(By). Prove that

lullwaagsy < € (lullyrags) + 172 + el

for some constant C' = C'(n) € (0, 00).
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Let u : © — R be a C! function on the open set Q C R” that satisfies the weak
form of the minimal surface equation, i.e.

=0 for any ¢ € C}(Q).

>, e

Let ¢ € {1,....,n} and denote with {ey,...,e,} the standard orthonormal basis for R".
Consider difference quotients of u, i.e. for [ € {1,...n} and h > 0 define on Q" = {y € N :
dist(y, 0Q?) > 2h} the difference quotient in the direction I:

u(z + hey) — u(x) .

o pu(z) == o

(i) Prove that §; _ju solves a uniformly elliptic PDE in divergence form on Q.

Hint: use the test function (d¢4()(z) = w for h > 0 and ¢ € CL(Q"),
where Q" = {y € Q : dist(y,0Q) > 2h}. You may use the “discrete integration by

parts formula”
- [ 9Gun) = [ G £
Q Q

that holds for f € C9(Q'), where Q' = {y € Q : dist(y,9Q) > h} and g € C°(Q).

(ii) Explain in a few sentences how you would deduce, from the conclusion obtained in
part (i), that u is actually C1® in Q. You are not required to fill in the details.
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In this question you are free to use results proven in class without proof.

(a) State precisely the Harnack inequality relating supp, (0) w to Infp, () u for u a weak
solution on Bs(0) to a PDE of the form D;(a"” Dju) = 0. Be sure to state all extra
hypotheses needed.

Suppose, for n > 2, that 2 C R" is a smooth, bounded, connected domain. Suppose
that u € C%(Q) satisfies u > 0 and solves

Lu:=aYDiju+b'Diu+cu=f in
u=~0 on 0N

for a, b, c, f € COH(Q) with A¢]? < a (2)&€&; < AJ€J? for A\, A € (0, 00).

(b) If f <0 and w is not identically zero, show that v > 0.

(¢) For f of arbitrary sign and ' € Q, use an argument by contradiction to show that
there is C' = C(n, L,Q, Q) such that
O,M;Q> :

Note that the PDE under consideration is not of the “divergence form” considered
in (a).

supu < C’(infu+ | f
Q 24
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Let n > 3 and consider €2 a bounded domain with smooth boundary. Recall that
the Sobolev inequality says that for f € Wol ’Q(Q),

(/ IfIQ“)% <c [ |psp

for some C = C(n) € (0,00) and k = 5.

Consider a Dirichlet eigenfunction for (2, i.e., u € C*(f) solving

Au+du=0 1inQ
u=20 on 0f).

We assume that u does not identically vanish.

(i) Show that A > 0.

(ii) Prove that for v > 2,

() <oy o

for some C' = C(n) € (0,00).
(iii) Iterate this inequality to prove that

Sgp|u’ < OA# [|u 2oy
for some C' = C(n) € (0,00). Hint:

oo 1 .

-1
H 269)2 5 = (2r)F 250 < oo
J=0

END OF PAPER
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