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1

State and prove the Hopf boundary point lemma for u : Ω ∪ {y} → R with
u ∈ C2(Ω) ∩ C0(Ω ∪ {y}) solving Lu = aijDiju + biDiu > 0 in Ω. Be sure to state
any extra hypothesis needed.

[You may use the comparison principle concerning functions f, g satisfying Lf > Lg

(as proven in class) without proof.]

2

Let Ω ⊂ R
2 be an open domain satisfying an exterior cone condition, i.e. for every

x0 ∈ ∂Ω there exists a solid cone C in R
2 with vertex at x0 such that C ∩ Ω = {x0}.

Consider the Dirichlet problem

{

∆u = f in Ω
u = ϕ on ∂Ω

, (1)

where f is a bounded function of class C0,µ(Ω), for a given µ ∈ (0, 1), and ϕ ∈ C0(∂Ω).

(i) Show that at each x0 ∈ ∂Ω there exists a barrier determined by a function of the
form g(r, θ) = rνh(θ), where r = |x − x0| and θ is the angle between the vector
x − x0 and the axis of the exterior cone. In other words find g of the above form
satisfying the following conditions: g < 0 in Ω, g = 0 at x0 and ∆g > δ > 0 in Ω,
for a positive δ (allowed to depend on Ω).

Hint : Set polar coordinates centred at x0 with θ = 0 corresponding to the
axis of the cone and let 0 < α < π be the opening angle of the cone, i.e.
C = {(r, θ) ∈ [0,∞) × [−π, π] : −α 6 θ 6 α}. You may use without proof the
fact that the Laplacian in polar coordinates of a function g(r, θ) has the expression

∆g = ∂2g
∂r2

+ 1
r
∂g
∂r

+ 1
r2

∂2g
∂θ2

.

(ii) Give the defining expression of the Perron solution u to the Dirichlet problem (1)
(you are not required to prove that u ∈ C2 or u solves ∆u = f).

(iii) Prove that u is continuous in Ω and it satisfies the boundary condition u|∂Ω = ϕ.

Hint : employ the barrier function constructed in part (i). You may use without
proof the fact that, given a subfunction u1 and a superfunction u2, we have u1 6 u2.

(iv) Show that the Dirichlet problem (1) admits a unique solution in C2(Ω) ∩ C0(Ω)
(you may use any result proven throughout the course).
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Let n > 2. Recall that

B+
r := {x ∈ R

n : |x| < r, xn > 0}

Sr := {x ∈ R
n, |x| < r, xn = 0}.

(a) Suppose that u ∈ C3(B+
2 ) satisfies

{

∆u = f in B+
2

u = 0 on S2

for f ∈ C1(B+
2 ). Prove that

‖u‖W 2,2(B+

1
) 6 C

(

‖u‖W 1,2(B+

2
) + ‖f‖L2(B+

2
)

)

for some constant C = C(n) ∈ (0,∞). Hint: First establish

n−1
∑

i=1

n
∑

j=1

∫

B+

1

(Diju)
2
6 C

(

‖u‖2
W 1,2(B+

2
)
+ ‖f‖2

L2(B+

2
)

)

.

(b) Suppose that u ∈ C3(B+
2 ) satisfies

{

∆u = f in B+
2

u = ϕ on S2

for f ∈ C1(B+
2 ) and ϕ ∈ C3(B+

2 ). Prove that

‖u‖
W 2,2(B+

1
) 6 C

(

‖u‖
W 1,2(B+

2
) + ‖f‖

L2(B+

2
) + ‖ϕ‖

W 2,2(B+

2
)

)

for some constant C = C(n) ∈ (0,∞).
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Let u : Ω → R be a C1 function on the open set Ω ⊂ R
n that satisfies the weak

form of the minimal surface equation, i.e.

n
∑

i=1

∫

Ω

Diu
√

1 + |Du|2
Diζ = 0 for any ζ ∈ C1

c (Ω).

Let ℓ ∈ {1, ..., n} and denote with {e1, ..., en} the standard orthonormal basis for R
n.

Consider difference quotients of u, i.e. for l ∈ {1, ...n} and h > 0 define on Ω′′ = {y ∈ Ω :
dist(y, ∂Ω) > 2h} the difference quotient in the direction l:

δl,hu(x) :=
u(x+ heℓ)− u(x)

h
.

(i) Prove that δl,−hu solves a uniformly elliptic PDE in divergence form on Ω′′.

Hint : use the test function (δℓ,hζ)(x) := ζ(x+heℓ)−ζ(x)
h

for h > 0 and ζ ∈ C1
c (Ω

′′),
where Ω′′ = {y ∈ Ω : dist(y, ∂Ω) > 2h}. You may use the “discrete integration by
parts formula”

−

∫

Ω
g (δℓ,hf) =

∫

Ω
(δℓ,−hg) f,

that holds for f ∈ C0
c (Ω

′), where Ω′ = {y ∈ Ω : dist(y, ∂Ω) > h} and g ∈ C0(Ω).

(ii) Explain in a few sentences how you would deduce, from the conclusion obtained in
part (i), that u is actually C1,α in Ω. You are not required to fill in the details.
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In this question you are free to use results proven in class without proof.

(a) State precisely the Harnack inequality relating supB1(0) u to infB1(0) u for u a weak

solution on B2(0) to a PDE of the form Di(a
ijDju) = 0. Be sure to state all extra

hypotheses needed.

Suppose, for n > 2, that Ω ⊂ R
n is a smooth, bounded, connected domain. Suppose

that u ∈ C2(Ω) satisfies u > 0 and solves

{

Lu := aijDiju+ biDiu+ cu = f in Ω

u = 0 on ∂Ω

for aij , bi, c, f ∈ C0,µ(Ω) with λ|ξ|2 6 aij(x)ξiξj 6 Λ|ξ|2 for λ,Λ ∈ (0,∞).

(b) If f 6 0 and u is not identically zero, show that u > 0.

(c) For f of arbitrary sign and Ω′ ⋐ Ω, use an argument by contradiction to show that
there is C = C(n,L,Ω′,Ω) such that

sup
Ω

u 6 C

(

inf
Ω′

u+ |f |0,µ;Ω

)

.

Note that the PDE under consideration is not of the “divergence form” considered
in (a).
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Let n > 3 and consider Ω a bounded domain with smooth boundary. Recall that
the Sobolev inequality says that for f ∈ W

1,2
0 (Ω),

(
∫

Ω
|f |2κ

)
1

κ

6 C

∫

Ω
|Df |2

for some C = C(n) ∈ (0,∞) and κ = n
n−2 .

Consider a Dirichlet eigenfunction for Ω, i.e., u ∈ C∞(Ω) solving

{

∆u+ λu = 0 in Ω

u = 0 on ∂Ω.

We assume that u does not identically vanish.

(i) Show that λ > 0.

(ii) Prove that for γ > 2,

(
∫

Ω
|u|γκ

)
1

κ

6 Cλ
γ2

(γ − 1)

∫

Ω
|u|γ

for some C = C(n) ∈ (0,∞).

(iii) Iterate this inequality to prove that

sup
Ω

|u| 6 Cλ
n
4 ‖u‖L2(Ω)

for some C = C(n) ∈ (0,∞). Hint:

∞
∏

j=0

(2κj)2
−1κ−j

= (2κ)
2−1

∑
∞

j=0

j

κj < ∞.
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