MATHEMATICAL TRIPOS Part III

Thursday, 26 May, 2016 1:30 pm to 4:30 pm

PAPER 105

ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

There are **THREE** questions in total. Question 2 is divided into 2a, 2b and 2c. Question 3 is divided into 3a and 3b.

> Attempt 1, 2a, 2b and 3a and **EITHER** 2c **OR** 3b.

Question 1 is worth 40 marks and questions 2 and 3 are worth 50 marks each. 2c and 3b are both worth 16 marks.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State what it means for a hypersurface to be *non-characteristic* for a given constant coefficient linear partial differential operator. Which of the following Cauchy problems is non-characteristic:

(i)
$$u_t = u_{xxx}, u(x, 0) = g(x)$$
, where $u(x, t) \in \mathbb{R}$;

(ii)
$$i\psi_t + \psi_{xx} = 0, \psi(x, 0) = g(x), \text{ where } \psi(x, t) \in \mathbb{C};$$

(iii) $\phi_t - i\phi_x = 0, \phi(x, 0) = g(x)$, where $\phi(x, t) \in \mathbb{C}$.

(In all of these $(x, t) \in \mathbb{R}^2$.)

Show that for any solution $\phi \in C^1(\mathbb{R}^2; \mathbb{C})$ of (iii), the initial value g = g(x) is necessarily real analytic, i.e. given by a convergent power series in a neighbourhood of every point. [*Hint: consider* ϕ *as a function of the complex variable* z = x + it.]

Write down a family $\{\phi_n(x,t)\}_{n=1}^{\infty}$ of C^1 solutions of (iii) such that, if $g_n(x) = \phi_n(x,0)$, then

$$\lim_{n \to \infty} \left(\sum_{j=0}^{r} \sup_{x \in \mathbb{R}} |\partial_x^j g_n(x)| \right) = 0, \forall r \in \mathbb{N}$$

but for each $t \neq 0$ there holds $\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |\phi_n(x, t)| = +\infty$.

State and prove the Cauchy estimates for the derivatives $f^{(j)}(z_0)$ of a function f at the centre of a disc $\overline{D}_r(z_0) = \{z : |z - z_0| \leq r\} \subset \mathbb{C}$ when f is holomorphic in an open set containing the disc and is bounded by M, on the disc i.e., $\sup_{\overline{D}_r(z_0)} |f(z)| \leq M$.

Now let $x \in \mathbb{C}$ and $t \in \mathbb{C}$ be complex variables, and consider the problem of proving existence of holomorphic solutions $\phi(x, t) \in \mathbb{C}$ of the equation

$$\phi_t - i\phi_x = f(x, t) \tag{1}$$

by studying the fixed point problem $\phi = T[\phi]$, where T is the integral operator

$$T[\phi](x,t) = \int_0^t \left(i\phi_x(x,z) + f(x,z) \right) dz.$$

Here we assume that f(x,t) is holomorphic in an open set which contains $\{(x,t) : |x| \leq R, |t| \leq \eta\}$, so that the integral defining T in the complex plane is actually independent of the path chosen in this set. Deduce from the Cauchy estimate that, for a continuous choice of $\sigma(\tau) \in (0,1)$ satisfying $\sigma(\tau) > s > 0$, there holds

$$\sup_{|x| < sR} |(T[\phi] - T[\psi])(x,t)| \leq \frac{1}{R} \int_0^{|t|} \left(\frac{1}{\sigma(\tau) - s}\right) \\ \times \left(\sup_{\substack{|x| \leq \sigma(\tau)R \\ |z| \leq |\tau|}} |(\phi - \psi)(x,z)|\right) d\tau,$$

The integral on the right is now a real integral, and it is understood that $|t| < \eta$ and ϕ, ψ are any pair of functions which are holomorphic for $|t| < \eta$ and |x| < R. Explain how this

Part III, Paper 105

UNIVERSITY OF

allows a proof that the operator T is a contraction in the Banach space \mathcal{B}_{α} of holomorphic functions on the domain

$$\mathcal{C}_{\alpha} = \{(x,t) \in \mathbb{C} \times \mathbb{C} : |t| < \alpha(1 - |x|/R) \text{ and } |x| < R \},\$$

with norm

$$\|u\|_{\alpha} \stackrel{\text{def}}{=} \sup_{0 < s < 1} \sup_{|t| < \alpha(1-s)} \sup_{|x| \leqslant sR} \left[|u(x,t)| \frac{\alpha(1-s) - |t|}{|t|} \right],$$

for an appropriate choice of α . Deduce the Cauchy-Kovalevskaya theorem for (1), i.e. the existence of a local holomorphic solution if f is holomorphic, (for the case of complex x, t.)

Now consider (iii), with x and t again real variables and g real analytic, and deduce the existence of a local real analytic solution $\phi(x, t)$.

UNIVERSITY OF

 $\mathbf{2}$

(a) Define the Sobolev space $W^{s,p}(\mathbb{R}^d), 1 \leq p \leq \infty, s \in \mathbb{N}$.

State the Morrey inequality and the Sobolev inequality for a function $u \in W^{1,p}(\mathbb{R}^d)$, giving the conditions on p and d for them to hold. Prove the Morrey inequality.

Prove that if $u \in W^{1,p}(\mathbb{R}^d)$ for p > d then $\lim_{|x|\to\infty} |u(x)| = 0$ (possibly after redefinition on a null set.)[*Hint: you may find it useful to prove first that if* $|u(x_0)| = 2\theta$ for some positive number θ , then there exists a positive number ρ which is independent of x_0 such that $|u(x)| \ge \theta$ for $|x - x_0| \le \rho$, and then argue by contradiction.]

(b) State the Arzelà-Ascoli theorem, and assuming its validity:

(i) state the Rellich-Kondrachov compactness theorem and explain very briefly the main points in its proof;

(ii) prove that if $\{u_n : \mathbb{R}^d \to \mathbb{R}\}_{n=1}^{\infty}$ is a sequence of functions with $\sup_n ||u_n||_{W^{1,p}(\mathbb{R}^d)} = M < \infty$, with p > d, then there is a subsequence $u_{n(j)}$ which converges uniformly on the unit ball $\{x : |x| \leq 1\}$ to a continuous limit (possibly after redefinition on a null set.)

Show that if u_n is a sequence in a Hilbert space X which converges weakly to a limit ϕ then $\|\phi\| \leq \liminf_{n \to \infty} \|u_n\|$.

Show that if u_n is a sequence in the Hilbert space $W^{1,2}(\mathbb{R}^3)$ which converges weakly to a limit ϕ then

$$\int_{\mathbb{R}^3} (1 - \cos \phi) \, dx \, \leq \, \liminf_{n \to \infty} \int_{\mathbb{R}^3} (1 - \cos u_n) \, dx \, .$$

(c) Given a function $f \in L^2(\mathbb{R}^3)$, consider the functional $E: W^{1,2}(\mathbb{R}^3) \to \mathbb{R}$ given by

$$E[u] = \frac{1}{2} \int_{\mathbb{R}^3} \left(|\nabla u|^2 + u^2 + 2(1 - \cos u) - 2fu \right) dx.$$

Show that there exists a function $\phi \in W^{1,2}(\mathbb{R}^3)$ such that

$$E[\phi] = \inf_{u \in W^{1,2}(\mathbb{R}^3)} E[u]$$

and derive a partial differential equation which ϕ satisfies, giving the precise sense in which this equation holds.

Show that $\lim_{|x|\to\infty} |\phi(x)| = 0$, and that if ϕ is C^2 , then

$$\sup_{x \in \mathbb{R}^3} |\phi(x)| \leqslant \sup_{x \in \mathbb{R}^3} |f(x)|.$$

[Hint: You may use without proof the fact that if $u \in W^{1,2}(\mathbb{R}^d)$ is a weak solution of $-\Delta u + u = G \in L^2(\mathbb{R}^d)$ then $\|u\|_{W^{2,2}(\mathbb{R}^d)} \leq C \|G\|_{L^2(\mathbb{R}^d)}$ for some constant C > 0.]

Part III, Paper 105

CAMBRIDGE

5

3 Throughout this question the time parameter t is non-negative, i.e., $t \ge 0$.

(a) Define what it means for the collection $\{S(t)\}_{t\geq 0}$ to be a strongly continuous oneparameter semigroup of contractions on a Banach space X, and define the generator A. Prove that the generator is closed and densely defined.

State the Hille-Yosida theorem.

Define the Sobolev space $H^1(\mathbb{R})$, and show that the space

$$X = \{ u \in H^1(\mathbb{R}) : \int_{\mathbb{R}} x^2 |u(x)|^2 \, dx < \infty \}$$

is a Hilbert space with the norm given by $||u||_X^2 = ||u||_{H^1}^2 + \int_{\mathbb{R}} x^2 |u(x)|^2 dx$. Characterize $H^1(\mathbb{R})$ as a subset of $L^2(\mathbb{R})$ in terms of the difference quotient $D_h f(x) = \frac{1}{h} (f(x+h) - f(x))$.

(b) Consider the operator $Au = \frac{d^2u}{dx^2} - u - x^2u$ as an unbounded linear operator on $L^2(\mathbb{R}, dx)$ with domain

Dom
$$A = \{u \in X \cap H^2(\mathbb{R}) : x^2 u(x) \in L^2(\mathbb{R}, dx)\}.$$

Show that A is a densely defined, closed operator, and obtain an estimate for the resolvent operator $(\lambda - A)^{-1}$ for $\lambda > 0$. Hence, deduce that the Cauchy problem for the equation

$$\partial_t \psi = \psi'' - x^2 \psi, \quad \psi(x,0) = \psi_0(x), \quad \psi(x,t) \in \mathbb{C}$$

determines a function $t \mapsto \psi(x,t) \in L^2(\mathbb{R}, dx)$ which is continuous into $L^2(\mathbb{R}, dx)$, satisfies $\|\psi(x,t)\|_{L^2(\mathbb{R}, dx)} \leq e^t \|\psi_0\|_{L^2(\mathbb{R})}$, and satisfies the equation if $\psi_0 \in \text{Dom } A$.

[In this question $L^2(\mathbb{R}, dx)$ is sometimes written in place of $L^2(\mathbb{R})$ for clarity, to emphasize the relevant independent variable.]

END OF PAPER