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1

State what it means for a hypersurface to be non-characteristic for a given constant
coefficient linear partial differential operator. Which of the following Cauchy problems is
non-characteristic:

(i) ut = uxxx , u(x, 0) = g(x) , where u(x, t) ∈ R;

(ii) iψt + ψxx = 0 , ψ(x, 0) = g(x) , where ψ(x, t) ∈ C;

(iii) φt − iφx = 0 , φ(x, 0) = g(x) , where φ(x, t) ∈ C.

(In all of these (x, t) ∈ R
2 .)

Show that for any solution φ ∈ C1(R2;C) of (iii), the initial value g = g(x) is
necessarily real analytic, i.e. given by a convergent power series in a neighbourhood of
every point. [Hint: consider φ as a function of the complex variable z = x+ it.]

Write down a family {φn(x, t)}
∞
n=1 of C1 solutions of (iii) such that, if gn(x) =

φn(x, 0), then

lim
n→∞

(

r
∑

j=0

sup
x∈R

|∂jxgn(x)|
)

= 0 ,∀r ∈ N

but for each t 6= 0 there holds lim
n→∞

supx∈R |φn(x, t)| = +∞ .

State and prove the Cauchy estimates for the derivatives f (j)(z0) of a function f at
the centre of a disc Dr(z0) = {z : |z − z0| 6 r} ⊂ C when f is holomorphic in an open set
containing the disc and is bounded by M , on the disc i.e., supDr(z0)

|f(z)| 6M .

Now let x ∈ C and t ∈ C be complex variables, and consider the problem of proving
existence of holomorphic solutions φ(x, t) ∈ C of the equation

φt − iφx = f(x, t) (1)

by studying the fixed point problem φ = T [φ], where T is the integral operator

T [φ](x, t) =

∫ t

0

(

iφx(x, z) + f(x, z)
)

dz .

Here we assume that f(x, t) is holomorphic in an open set which contains {(x, t) : |x| 6
R, |t| 6 η} , so that the integral defining T in the complex plane is actually independent
of the path chosen in this set. Deduce from the Cauchy estimate that, for a continuous
choice of σ(τ) ∈ (0, 1) satisfying σ(τ) > s > 0, there holds

sup
|x|<sR

|(T [φ]− T [ψ])(x, t)| 6
1

R

∫ |t|

0

(

1

σ(τ) − s

)

×

(

sup
|x|6σ(τ)R
|z|6|τ |

|(φ− ψ)(x, z)|

)

dτ ,

The integral on the right is now a real integral, and it is understood that |t| < η and φ,ψ
are any pair of functions which are holomorphic for |t| < η and |x| < R . Explain how this
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allows a proof that the operator T is a contraction in the Banach space Bα of holomorphic
functions on the domain

Cα = {(x, t) ∈ C× C : |t| < α(1− |x|/R) and |x| < R },

with norm

‖u‖α
def

= sup
0<s<1

sup
|t|<α(1−s)

sup
|x|6sR

[

|u(x, t)|
α(1− s)− |t|

|t|

]

,

for an appropriate choice of α . Deduce the Cauchy-Kovalevskaya theorem for (1), i.e. the
existence of a local holomorphic solution if f is holomorphic, (for the case of complex x, t.)

Now consider (iii), with x and t again real variables and g real analytic, and deduce
the existence of a local real analytic solution φ(x, t).
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2

(a) Define the Sobolev space W s,p(Rd) , 1 6 p 6 ∞ , s ∈ N .

State the Morrey inequality and the Sobolev inequality for a function u ∈W 1,p(Rd),
giving the conditions on p and d for them to hold. Prove the Morrey inequality.

Prove that if u ∈ W 1,p(Rd) for p > d then lim
|x|→∞

|u(x)| = 0 (possibly after

redefinition on a null set.)[Hint: you may find it useful to prove first that if |u(x0)| = 2θ
for some positive number θ, then there exists a positive number ρ which is independent of

x0 such that |u(x)| > θ for |x− x0| 6 ρ, and then argue by contradiction.]

(b) State the Arzelà-Ascoli theorem, and assuming its validity:

(i) state the Rellich-Kondrachov compactness theorem and explain very briefly the
main points in its proof;

(ii) prove that if {un : Rd → R}∞n=1 is a sequence of functions with supn ‖un‖W 1,p(Rd) =
M < ∞, with p > d, then there is a subsequence un(j) which converges uniformly on the
unit ball {x : |x| 6 1} to a continuous limit (possibly after redefinition on a null set.)

Show that if un is a sequence in a Hilbert space X which converges weakly to a
limit φ then ‖φ‖ 6 lim inf

n→∞
‖un‖ .

Show that if un is a sequence in the Hilbert space W 1,2(R3) which converges weakly
to a limit φ then

∫

R3

(1− cosφ) dx 6 lim inf
n→∞

∫

R3

(1− cos un) dx .

(c) Given a function f ∈ L2(R3), consider the functional E :W 1,2(R3) → R given by

E[u] =
1

2

∫

R3

(

|∇u|2 + u2 + 2(1 − cos u)− 2fu
)

dx .

Show that there exists a function φ ∈W 1,2(R3) such that

E[φ] = inf
u∈W 1,2(R3)

E[u]

and derive a partial differential equation which φ satisfies, giving the precise sense in which
this equation holds.

Show that lim|x|→∞ |φ(x)| = 0 , and that if φ is C2, then

sup
x∈R3

|φ(x)| 6 sup
x∈R3

|f(x)| .

[Hint: You may use without proof the fact that if u ∈ W 1,2(Rd) is a weak solution of

−∆u+ u = G ∈ L2(Rd) then ‖u‖W 2,2(Rd) 6 C‖G‖L2(Rd) for some constant C > 0 .]
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3 Throughout this question the time parameter t is non-negative, i.e., t > 0 .

(a) Define what it means for the collection {S(t)}t>0 to be a strongly continuous one-

parameter semigroup of contractions on a Banach space X, and define the generator A .
Prove that the generator is closed and densely defined.

State the Hille-Yosida theorem.

Define the Sobolev space H1(R), and show that the space

X = {u ∈ H1(R) :

∫

R

x2|u(x)|2 dx < ∞}

is a Hilbert space with the norm given by ‖u‖2X = ‖u‖2
H1 +

∫

R
x2|u(x)|2 dx . Characterize

H1(R) as a subset of L2(R) in terms of the difference quotient Dhf(x) =
1
h
(f(x+h)−f(x)).

(b) Consider the operator Au = d2u
dx2−u−x

2u as an unbounded linear operator on L2(R, dx)
with domain

DomA = {u ∈ X ∩H2(R) : x2u(x) ∈ L2(R, dx) } .

Show that A is a densely defined, closed operator, and obtain an estimate for the
resolvent operator (λ − A)−1 for λ > 0 . Hence, deduce that the Cauchy problem for the
equation

∂tψ = ψ′′ − x2ψ , ψ(x, 0) = ψ0(x) , ψ(x, t) ∈ C

determines a function t 7→ ψ(x, t) ∈ L2(R, dx) which is continuous into L2(R, dx), satisfies
‖ψ(x, t)‖L2(R,dx) 6 et‖ψ0‖L2(R) , and satisfies the equation if ψ0 ∈ DomA .

[In this question L2(R, dx) is sometimes written in place of L2(R) for clarity, to

emphasize the relevant independent variable.]
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