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1

Let R = k[X1,X
−1
1 ,X2,X

−1
2 ] where k is a field.

Show that R is Noetherian.

For a1 and a2 in Z, let θ(a1,a2) : R −→ k[T, T−1]
∑

m1,m2
λm1,m2

Xm1

1 Xm2

2 7→
∑

m1,m2
λm1,m2

T a1m1+a2m2

where m1 and m2 are in Z and λm1,m2
is in k.

Show that if r is a non-zero element of R then there exists some θ(a1,a2) such that
θ(a1,a2)(r) is non-zero.

Show that any k-subalgebra of k[T, T−1] is Noetherian.

Give an example of a non-Noetherian of R.

2

State and prove the weak Nullstellensatz

Let R = R[X1,X
−1
1 ,X2,X

−1
2 ].

Describe the maximal ideals of R.

Show that any prime ideal P of R is the intersection of the maximal ideals containing
P .

Define the set of associated primes of a non-zero finitely generated R-module M .
Show that this set is non-empty.

What does it mean for an ideal of R to be P -primary?

Give an example of an ideal I of R and a prime ideal P such that P is the only
minimal prime over I but I is not P -primary.
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3

Let R = Z[X1,X
−1
1 ,X2,X

−1
2 ] and let θ : R −→ Z,

∑
m1,m2

λm1,m2
Xm1

1 Xm2

2 7→
∑

m1,m2
λm1,m2

where m1,m2 and λm1,m2
are in Z.

Denote the kernel of θ by P .

Show that P/P 2 is isomorphic to Z
2.

Show that the localisation RP of R at P is of dimension 2.

Define what it means for a local ring to be regular. Show that RP is a regular local
ring.

4

Define what it means for an integral domain to be integrally closed.

Show that any unique factorisation domain is integrally closed.

State and prove the Going Down theorem.

5

Let R be a Noetherian ring, and let I be an ideal. Let M be a finitely generated
R-module with submodule N .

State and prove the Artin-Rees lemma.

Show that ∩∞

j=1I
jM consists of those m in M that are annihilated by some element

of the form 1 + r with r ∈ I.

Give an example of a non-Noetherian ring R, an ideal I and an element m ∈ ∩
∞

j=1I
j

which is not annihilated by any element of the form 1 + r with r ∈ I.

6

Let k be a field and S be the polynomial ring k[X1, . . . ,Xn] considered as a graded
ring, graded by total degree.

State and prove the Hilbert-Serre theorem concerning the Poincare series of a finitely
generated graded S-module V .

Sketch a proof that there is a free resolution of V of length at most n. (You should
explain any terminology that you use.)
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