MATHEMATICAL TRIPOS Part III

Friday, 27 May, 2016 $\,$ 1:30 pm to 4:30 pm

Draft 4 July, 2016

PAPER 101

COMMUTATIVE ALGEBRA

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $R = k[X_1, X_1^{-1}, X_2, X_2^{-1}]$ where k is a field. Show that R is Noetherian.

For a_1 and a_2 in \mathbb{Z} , let $\theta_{(a_1,a_2)}: R \longrightarrow k[T,T^{-1}]$

 $\sum_{m_1,m_2} \lambda_{m_1,m_2} X_1^{m_1} X_2^{m_2} \mapsto \sum_{m_1,m_2} \lambda_{m_1,m_2} T^{a_1m_1+a_2m_2}$

where m_1 and m_2 are in \mathbb{Z} and λ_{m_1,m_2} is in k.

Show that if r is a non-zero element of R then there exists some $\theta_{(a_1,a_2)}$ such that $\theta_{(a_1,a_2)}(r)$ is non-zero.

Show that any k-subalgebra of $k[T, T^{-1}]$ is Noetherian.

Give an example of a non-Noetherian of R.

$\mathbf{2}$

State and prove the weak Nullstellensatz

Let $R = \mathbb{R}[X_1, X_1^{-1}, X_2, X_2^{-1}].$

Describe the maximal ideals of R.

Show that any prime ideal P of R is the intersection of the maximal ideals containing P.

Define the set of associated primes of a non-zero finitely generated R-module M. Show that this set is non-empty.

What does it mean for an ideal of R to be P-primary?

Give an example of an ideal I of R and a prime ideal P such that P is the only minimal prime over I but I is not P-primary.

UNIVERSITY OF

3

Let $R = \mathbb{Z}[X_1, X_1^{-1}, X_2, X_2^{-1}]$ and let $\theta : R \longrightarrow \mathbb{Z}$, $\sum_{m_1, m_2} \lambda_{m_1, m_2} X_1^{m_1} X_2^{m_2} \mapsto \sum_{m_1, m_2} \lambda_{m_1, m_2}$ where m_1, m_2 and λ_{m_1, m_2} are in \mathbb{Z} . Denote the kernel of θ by P. Show that P/P^2 is isomorphic to \mathbb{Z}^2 . Show that the localisation R_P of R at P is of dimension 2. Define what it means for a local ring to be regular. Show that R_P is a regular local

ring.

4

Define what it means for an integral domain to be integrally closed.

Show that any unique factorisation domain is integrally closed.

State and prove the Going Down theorem.

$\mathbf{5}$

Let R be a Noetherian ring, and let I be an ideal. Let M be a finitely generated R-module with submodule N.

State and prove the Artin-Rees lemma.

Show that $\bigcap_{j=1}^{\infty} I^j M$ consists of those m in M that are annihilated by some element of the form 1 + r with $r \in I$.

Give an example of a non-Noetherian ring R, an ideal I and an element $m \in \bigcap_{j=1}^{\infty} I^j$ which is not annihilated by any element of the form 1 + r with $r \in I$.

6

Let k be a field and S be the polynomial ring $k[X_1, \ldots, X_n]$ considered as a graded ring, graded by total degree.

State and prove the Hilbert-Serre theorem concerning the Poincare series of a finitely generated graded S-module V.

Sketch a proof that there is a free resolution of V of length at most n. (You should explain any terminology that you use.)

4

END OF PAPER

Part III, Paper 101, Draft 4 July, 2016