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Let Ω be a bounded domain in R
n and

Lu = Di(a
ijDju+ biu) + ciDiu+ du

be an elliptic operator in divergence form with coefficients aij ∈ L∞(Ω), bi, ci ∈ Lq(Ω),
and d ∈ Lq/2(Ω), where q > n.

(i) State, without proof, the weak Harnack inequality for supersolutions u ∈ W 1,2(Ω)
satisfying Lu 6 Dif

i + g weakly in Ω for f i ∈ Lq(Ω) and g ∈ Lq/2(Ω).

(ii) Deduce from Part (i) the following version of the strong maximum principle: Let
bi = d = 0 a.e. in Ω. Suppose u ∈ W 1,2(Ω) such that Lu > 0 weakly in Ω. If there
is an open ball B ⊂⊂ Ω such that

sup
B

u = sup
Ω

u,

then u is constant on Ω.

(iii) Deduce from Part (i) the following: Suppose u ∈ W 1,2(Ω) such that Lu = Dif
i + g

weakly in Ω for some f i ∈ Lq(Ω) and g ∈ Lq/2(Ω). Then

[u]µ;Ω′ 6 C

(

sup
Ω

|u|+ ‖f i‖Lq(Ω) + ‖g‖Lq/2(Ω)

)

for all Ω′ ⊂⊂ Ω and some constant C = C(n,L,Ω′,Ω) ∈ (0,∞).
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Consider the partial differential equation

Lv = aijDijv + biDiv + cv = f

in Ω ⊂ R
n, where aij , bi, c, f are bounded functions on Ω, c 6 0 and aij satisfy the

ellipticity condition aij(x)ξiξj > λ|ξ|2 for all x ∈ Ω and xi ∈ R
n and some constant λ > 0.

(a) State and prove the weak maximum principle for u ∈ C2(Ω) ∩ C0(Ω).

(b) Prove that there exists at most one solution to the Dirichlet problem

{

aijDiju+ biDiu+ cu = f in Ω
u|∂Ω = ϕ ∈ C0(∂Ω)

(c) Show by means of an example that for u ∈ C2(Ω) ∩ C0(Ω) satisfying Lu > 0 the
inequality supΩ u 6 sup∂Ω u might fail.
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Let B ⊂ R
n be the open unit ball and let u ∈ W 1,2(B) solve the partial differential

equation
Di(a

ijDju) = 0,

weakly in B, where aij ∈ L∞(B) (say |aij | 6 Λ) satisfy the ellipticity condition
aijξiξj > λ|ξ|2 for all x ∈ Ω and ξ ∈ R

n and some constant λ ∈ (0,∞).

(a) Prove that for any c ∈ R, for any x0 ∈ B and R > 0 such that B2R(x0) ⊂ B it holds

∫

BR(x0)
|∇u|2 6

C(λ,Λ)

R2

∫

B2R(x0)\BR(x0)
|u− c|2.

(b) Prove that there exist constants µ ∈ (0, 1) and K ∈ (0,∞) independent of u and x0
such that whenever Br0(x0) ⊂ B we have the following estimate for all r 6 r0:

∫

Br(x0)
|∇u|2 6 K

(

r

r0

)µ ∫

B
|∇u|2.

[HINT: you may use without proof the Poincaré inequality

∫

B2R(x0)\BR(x0)
|v − v|2 6 C(n)R2

∫

B2R(x0)\BR(x0)
|∇v|2,

where v stands for the average of v in the annulus B2R(x0) \BR(x0).]
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(a) Show that if u ∈ C2,µ(B1(0)), where µ ∈ (0, 1), is a solution to

∆u = f in B1(0)

for some f ∈ C0,µ(B1(0)), then for every δ > 0,

[D2u]µ;B1/2(0) 6 δ[D2u]µ;B1(0) + C
(

‖u‖C2(B1(0)) + ‖f‖C0,µ(B1(0))

)

for some constant C = C(n, µ, δ) ∈ (0,∞).

[You may assume without proof Liouville’s lemma: There does not exist any
nonconstant harmonic function w ∈ C0(Rn) such that [w]µ;Rn < ∞.]

(b) Assuming standard elliptic theory without proof, show that the set

S =
{

u ∈ C2(B1(0)) : ‖∆u‖C0,µ(B1(0)) 6 1, u = 0 on ∂Ω
}

,

where µ ∈ (0, 1), is sequentially compact in C2(B1(0)).
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Consider the rectangle R = {0 < x < π, 0 < y < 1} ⊂ R
2 and let u ∈ C0(R)∩C2(R)

be a solution of the partial differential equation

uxx + y2uyy = 0.

(a) Assume that u(0, y) = u(π, y) = 0 for 0 6 y 6 1. Prove that u must be of the form

∑

n∈Z
Anfn(y) sin(nx),

where
fn(y) = y

1

2
(1+

√
1+4n2)

and An ∈ R are constants.

(b) Consider the Dirichlet problem

{

uxx + y2uyy = 0 in R

u|∂R = ϕ ∈ C0(∂R).
(⋆)

Prove that there exist choices of ϕ for which no solution to (⋆) exists.

(c) Under suitable assumptions, the Dirichlet Problem for an elliptic partial differential
equation on a bounded domain Ω with continuous boundary datum does admit a
solution. Which assumption is not satisfied in (⋆)?
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Let Ω be a bounded domain in R
n and consider the differential equation

∆u =

n
∑

i=1

Di(b
iu) + cu+ f in Ω, (⋆)

where bi, c, f ∈ C∞(Ω).

(a) Formulate what it means for u ∈ L2(Ω) to be a weak solution to (⋆) in Ω.

(b) Let {φσ}σ>0 be a family of smooth mollifiers φσ : Rn → [0,∞) with sptφσ ⊂ Bσ and
∫

Bσ(0)
φσ = 1. Given a function v ∈ L1(Ω) and σ > 0, let vσ denote the convolution

of v with φσ.

Show that if u ∈ L2(Ω) is a weak solution to (⋆) then

∆uσ(x) =

n
∑

i=1

Di(b
iu)σ(x) + (cu)σ(x) + fσ(x)

for all x ∈ Ω with dist(x, ∂Ω) > σ.

(c) Use Part (b) and standard elliptic estimates to show that whenever u ∈ L2(Ω) is a
weak solution to (⋆), u ∈ C∞(Ω).
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