

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2015 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 9

ELLIPTIC PDES

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Let Ω be a bounded domain in \mathbb{R}^n and

$$Lu = D_i(a^{ij}D_ju + b^iu) + c^iD_iu + du$$

be an elliptic operator in divergence form with coefficients $a^{ij} \in L^{\infty}(\Omega), b^i, c^i \in L^q(\Omega)$, and $d \in L^{q/2}(\Omega)$, where q > n.

- (i) State, without proof, the weak Harnack inequality for supersolutions $u \in W^{1,2}(\Omega)$ satisfying $Lu \leq D_i f^i + g$ weakly in Ω for $f^i \in L^q(\Omega)$ and $g \in L^{q/2}(\Omega)$.
- (ii) Deduce from Part (i) the following version of the strong maximum principle: Let $b^i = d = 0$ a.e. in Ω . Suppose $u \in W^{1,2}(\Omega)$ such that $Lu \ge 0$ weakly in Ω . If there is an open ball $B \subset \subset \Omega$ such that

$$\sup_{B} u = \sup_{\Omega} u,$$

then u is constant on Ω .

(iii) Deduce from Part (i) the following: Suppose $u \in W^{1,2}(\Omega)$ such that $Lu = D_i f^i + g$ weakly in Ω for some $f^i \in L^q(\Omega)$ and $g \in L^{q/2}(\Omega)$. Then

$$[u]_{\mu;\Omega'} \leqslant C \left(\sup_{\Omega} |u| + \|f^i\|_{L^q(\Omega)} + \|g\|_{L^{q/2}(\Omega)} \right)$$

for all $\Omega' \subset \subset \Omega$ and some constant $C = C(n, L, \Omega', \Omega) \in (0, \infty)$.

 $\mathbf{2}$

Consider the partial differential equation

$$Lv = a^{ij}D_{ij}v + b^iD_iv + cv = f$$

in $\Omega \subset \mathbb{R}^n$, where a^{ij}, b^i, c, f are bounded functions on $\Omega, c \leq 0$ and a^{ij} satisfy the ellipticity condition $a^{ij}(x)\xi_i\xi_j \geq \lambda |\xi|^2$ for all $x \in \Omega$ and $xi \in \mathbb{R}^n$ and some constant $\lambda > 0$.

- (a) State and prove the weak maximum principle for $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$.
- (b) Prove that there exists at most one solution to the Dirichlet problem

$$\begin{cases} a^{ij}D_{ij}u + b^iD_iu + cu = f \text{ in } \Omega \\ u|_{\partial\Omega} = \varphi \in C^0(\partial\Omega) \end{cases}$$

(c) Show by means of an example that for $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfying $Lu \ge 0$ the inequality $\sup_{\Omega} u \le \sup_{\partial \Omega} u$ might fail.

CAMBRIDGE

3

Let $B \subset \mathbb{R}^n$ be the open unit ball and let $u \in W^{1,2}(B)$ solve the partial differential equation

$$D_i(a^{ij}D_ju) = 0,$$

weakly in B, where $a^{ij} \in L^{\infty}(B)$ (say $|a^{ij}| \leq \Lambda$) satisfy the ellipticity condition $a^{ij}\xi_i\xi_j \geq \lambda |\xi|^2$ for all $x \in \Omega$ and $\xi \in \mathbb{R}^n$ and some constant $\lambda \in (0,\infty)$.

(a) Prove that for any $c \in \mathbb{R}$, for any $x_0 \in B$ and R > 0 such that $B_{2R}(x_0) \subset B$ it holds

$$\int_{B_R(x_0)} |\nabla u|^2 \leqslant \frac{C(\lambda, \Lambda)}{R^2} \int_{B_{2R}(x_0) \setminus B_R(x_0)} |u - c|^2.$$

(b) Prove that there exist constants $\mu \in (0, 1)$ and $K \in (0, \infty)$ independent of u and x_0 such that whenever $B_{r_0}(x_0) \subset B$ we have the following estimate for all $r \leq r_0$:

$$\int_{B_r(x_0)} |\nabla u|^2 \leqslant K \left(\frac{r}{r_0}\right)^{\mu} \int_B |\nabla u|^2.$$

[HINT: you may use without proof the Poincaré inequality

$$\int_{B_{2R}(x_0)\setminus B_R(x_0)} |v-\overline{v}|^2 \leqslant C(n)R^2 \int_{B_{2R}(x_0)\setminus B_R(x_0)} |\nabla v|^2,$$

where \overline{v} stands for the average of v in the annulus $B_{2R}(x_0) \setminus B_R(x_0)$.]

 $\mathbf{4}$

(a) Show that if $u \in C^{2,\mu}(\overline{B_1(0)})$, where $\mu \in (0,1)$, is a solution to

$$\Delta u = f \text{ in } B_1(0)$$

for some $f \in C^{0,\mu}(\overline{B_1(0)})$, then for every $\delta > 0$,

$$[D^{2}u]_{\mu;B_{1/2}(0)} \leq \delta[D^{2}u]_{\mu;B_{1}(0)} + C\left(\|u\|_{C^{2}(B_{1}(0))} + \|f\|_{C^{0,\mu}(B_{1}(0))}\right)$$

for some constant $C = C(n, \mu, \delta) \in (0, \infty)$.

[You may assume without proof Liouville's lemma: There does not exist any nonconstant harmonic function $w \in C^0(\mathbb{R}^n)$ such that $[w]_{\mu;\mathbb{R}^n} < \infty$.]

(b) Assuming standard elliptic theory without proof, show that the set

$$S = \left\{ u \in C^{2}(\overline{B_{1}(0)}) : \|\Delta u\|_{C^{0,\mu}(B_{1}(0))} \leq 1, \ u = 0 \text{ on } \partial\Omega \right\},\$$

where $\mu \in (0, 1)$, is sequentially compact in $C^2(\overline{B_1(0)})$.

 $\mathbf{5}$

Consider the rectangle $R = \{0 < x < \pi, 0 < y < 1\} \subset \mathbb{R}^2$ and let $u \in C^0(\overline{R}) \cap C^2(R)$ be a solution of the partial differential equation

$$u_{xx} + y^2 u_{yy} = 0.$$

(a) Assume that $u(0,y) = u(\pi,y) = 0$ for $0 \le y \le 1$. Prove that u must be of the form

$$\sum_{n\in\mathbb{Z}}A_nf_n(y)\sin(nx),$$

where

$$f_n(y) = y^{\frac{1}{2}(1+\sqrt{1+4n^2})}$$

and $A_n \in \mathbb{R}$ are constants.

(b) Consider the Dirichlet problem

$$\begin{cases} u_{xx} + y^2 u_{yy} = 0 \text{ in } R\\ u_{\partial R} = \varphi \in C^0(\partial R). \end{cases}$$
(*)

Prove that there exist choices of φ for which no solution to (\star) exists.

(c) Under suitable assumptions, the Dirichlet Problem for an elliptic partial differential equation on a bounded domain Ω with continuous boundary datum does admit a solution. Which assumption is not satisfied in (\star) ?

6

Let Ω be a bounded domain in \mathbb{R}^n and consider the differential equation

$$\Delta u = \sum_{i=1}^{n} D_i(b^i u) + cu + f \text{ in } \Omega, \qquad (\star)$$

where $b^i, c, f \in C^{\infty}(\Omega)$.

- (a) Formulate what it means for $u \in L^2(\Omega)$ to be a weak solution to (\star) in Ω .
- (b) Let $\{\phi_{\sigma}\}_{\sigma>0}$ be a family of smooth mollifiers $\phi_{\sigma} : \mathbb{R}^n \to [0, \infty)$ with spt $\phi_{\sigma} \subset B_{\sigma}$ and $\int_{B_{\sigma}(0)} \phi_{\sigma} = 1$. Given a function $v \in L^1(\Omega)$ and $\sigma > 0$, let v_{σ} denote the convolution of v with ϕ_{σ} .

Show that if $u \in L^2(\Omega)$ is a weak solution to (\star) then

$$\Delta u_{\sigma}(x) = \sum_{i=1}^{n} D_i(b^i u)_{\sigma}(x) + (cu)_{\sigma}(x) + f_{\sigma}(x)$$

for all $x \in \Omega$ with $dist(x, \partial \Omega) > \sigma$.

(c) Use Part (b) and standard elliptic estimates to show that whenever $u \in L^2(\Omega)$ is a weak solution to $(\star), u \in C^{\infty}(\Omega)$.

END OF PAPER