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The one-dimensional spin S quantum Heisenberg antiferromagnet is specified by the
Hamiltonian,

Ĥ = J

N
∑

n=1

Ŝn · Ŝn+1 ,

where J > 0, the number of lattice sites N is even, and periodic boundary conditions are
imposed such that ŜN+1 ≡ Ŝ1.

(a) Define the classical ground state degeneracy of the system and specify one of the
possible classical antiferromagnetic ground states. Explain why the classical ground
state is not an eigenstate of the quantum Hamiltonian.

(b) Applying a suitable canonical transformation, show that the Hamiltonian can be
brought to the form

Ĥ = −J

N
∑

n=1

[

ŜznŜ
z
n+1 −

1

2

(

Ŝ+
n Ŝ

+
n+1 + Ŝ−

n Ŝ
−
n+1

)

]

,

where Ŝ±
n = Ŝxn ± iŜyn denote spin raising and lowering operators.

(c) Show that the Holstein-Primakoff transformation,

Ŝ+ = (2S)1/2
(

1−
a†a

2S

)1/2

a, Ŝ− = (Ŝ+)†, Ŝz = S − a†a ,

is consistent with the quantum spin algebra, [Ŝ+, Ŝ−] = 2Ŝz (where we have set
~ = 1).

(d) Taking the spin to be large S ≫ 1, show that to first order in S, the antiferromagnetic

Hamiltonian can be written as a bilinear in lattice boson operators an and a†n.

(e) Bringing the Hamiltonian to diagonal form, show that the excitation spectrum of the
resulting Hamiltonian is given by ωk = 2JS| sin k|. Define the quantum numbers k
and comment on the form of the low-energy spectrum.

(f) Show that the ground state sublattice magnetisation is given by

〈g.s.|
1

N

N
∑

n=1

(−1)nŜzn|g.s.〉 ≃ S −

∫ π

−π

dk

2π

1

2

[

1

| sin k|
− 1

]

.

Comment on the physical implications of this result.
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In the BCS approximation, the pairing Hamiltonian of a superconducting electron
system is given by

Ĥ =
∑

kσ

ǫkc
†
kσckσ +

∑

k,k′

Vk,k′b†
k
bk′ ,

where b†
k

≡ c†
k↑c

†
−k↓, and the fermion operators c†

kσ and ckσ respectively create and
annihilate electrons with wavevector k and spin σ.

(a) Neglecting terms of order (bk − 〈bk〉)
2, where 〈bk〉 ≡ 〈g.s.|bk|g.s.〉 denotes the ground

state expectation value, show that

Ĥ − µN̂ =
∑

kσ

ξkc
†
kσckσ −

∑

k

(

∆kb
†
k
+ h.c.

)

−
∑

k,k′

Vk,k′〈b†
k
〉〈bk′〉 ,

where ξk = ǫk − µ and ∆k = −
∑

k′ Vk,k′〈bk′〉.

(b) Under what conditions on the real coefficients uk and vk is the following transforma-
tion canonical,

(

ck↑
c†−k↓

)

=

(

uk vk
−vk uk

)

(

γk↑
γ†−k↓

)

.

(c) Taking ∆k to be real, use this transformation to show that the BCS pairing
Hamiltonian can be brought to the diagonal form,

Ĥ − µN̂ =
∑

kσ

Ekγ
†
kσγkσ +

∑

k

(

ξk − Ek +∆k〈b
†
k
〉
)

,

where Ek = (ξ2
k
+|∆k|

2)1/2. Show that the corresponding ground state wavefunction
is given by

|g.s.〉 =
∏

k

(

cos θk + sin θk c
†
k↑c

†
−k↓

)

|0〉 ,

with |0〉 the vacuum state of the electron system.

(d) At zero temperature, show that

∆k = −
∑

k′

Vk,k′

∆k′

2Ek′

.

Taking Vk,k′ = −V/L3 for {|ξk|, |ξk′ |} < ~ωD and zero otherwise, show that
∆k = ∆δk,0, where

∆ =
~ωD

sinh(1/νV )
,

and ν is the total electronic density of states at the Fermi level.

You may note the identity
∫ z
0 dx (1 + x2)−1/2 = sinh−1(z).
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Without detailed derivation, state the Lagrangian form of the Feynman path integral
for the Hamiltonian,

Ĥ =
p̂2

2m
+ V (q), p̂ = −i~∂q.

(a) Defining the eigenstates of a free quantum particle confined to an infinite square
well potential of width L (centred on q = L/2), show that the quantum partition

function, Z = tr e−βĤ , is given by the sum

Z =
∞
∑

n=1

exp

[

−β
(~πn)2

2mL2

]

.

(b) Starting with the Lagrangian form of the Feynman path integral, show that the
quantum partition function of a particle in the infinite square well potential can be
also be expressed as

Z =

∫ L

0
dq

∞
∑

r=−∞

[

∫

q(0)=q, q(β)=2rL+q
Dq(τ) e−S(q)/~ −

∫

q(0)=q, q(β)=2rL−q
Dq(τ) e−S(q)/~

]

,

where S(q) =
1

~

∫ β

0
dτ

1

2
m(∂τ q)

2.

Hint: To obtain this result, you will find it useful to draw a figure showing typical

Feynman trajectories, and note that each scattering event from a wall of the infinite

potential well is accompanied by a π phase shift of the Feynman amplitude.

(c) By making use of the expression for the free particle propagator,

〈q| exp

[

−
i

~

p̂2

2m
t

]

|q〉 =
( m

2πi~t

)1/2
, evaluate the path integral above and show that

Z =

(

m

2π~2β

)1/2 ∫ L

0
dq

∞
∑

r=−∞

(

exp

[

−
2m

~2

(rL)2

β

]

− exp

[

−
2m

~2

(rL− q)2

β

])

.

(d) Making use of the Poisson summation formula,

∞
∑

r=−∞

h(r) =

∞
∑

n=−∞

∫ ∞

−∞

dφh(φ) e2πinφ,

show that this expression is consistent with that obtained in part (a). You may

note that

∫ ∞

−∞

dx exp
[

−
a

2
x2 + ibx

]

=

(

2π

a

)1/2

exp

[

−
b2

2a

]

.
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(a) Show that the bosonic (ζ = 1), respectively fermionic (ζ = −1), coherent states

|φ〉 = exp

[

ζ
∑

n

ψna
†
n

]

,

are eigenstates of the associated bosonic, respectively fermionic, annihilation oper-
ators, an, with eigenvalue ψn. In both cases, explain the nature of the eigenvalues,
ψn.

(b) By calculating its commutator with the field operators an and a†n, show that the
operator

∫

d[ψ̄, ψ]e−
∑

n
ψ̄nψn |ψ〉〈ψ| ,

provides the resolution of identity for bosons or fermions on the Fock space. Explain
what is meant by d[ψ̄, ψ] and the domain of integration.

(c) Using this result, show that the quantum partition function for the many-body
Hamiltonian, Ĥ, can be expressed as

Z =

∫

d[ψ̄, ψ]e−
∑

n
ψ̄nψn〈ζψ|e−β(Ĥ−µN̂)|ψ〉 ,

where N̂ denotes the total number operator, µ the chemical potential, and β =
1/kBT .

(d) Starting with this result, show that the quantum partition function can be expressed
as the field integral,

Z =

∫

ψ̄(β)=ζψ̄(0),ψ(β)=ζψ(0)
D(ψ̄, ψ)e−S[ψ̄,ψ],

where

S[ψ̄, ψ] =

∫ β

0
dτ

[

∑

n

ψ̄n(∂τ − µ)ψn +H(ψ̄, ψ)

]

.

(e) For the quantum harmonic oscillator, Ĥ = ~ω(a†a+1/2), explain the relation between
the field integral and the Hamiltonian form of the Feynman path integral.
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