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1

A two-dimensional sheet swims in a viscous fluid by deforming its shape as a
travelling wave. The material points on the sheet, denoted [xs, ys(x, t)] in Cartesian
coordinates, are given in the swimming frame by

xs = x, ys = y0 sin(kx− ωt),

where k > 0 is the wavenumber, ω > 0 the frequency and y0 > 0 the waving amplitude.
A Newtonian fluid of viscosity µ is located in the y > 0 domain. The unknown swimming
speed of the sheet is denoted −Uex and we assume that y0k ≪ 1 (ex is the unit vector
in the x direction). The sheet is swimming in a Newtonian fluid which is allowed to slip
past its surface. Using us to denote the velocity of the material points of the sheet, the
appropriate slip boundary condition for the fluid velocity, u, is given, in the limit y0k ≪ 1,
by

u− us = γ

(

∂ux
∂y

+
∂uy
∂x

)

ex at (x, y) = (xs, ys),

where γ > 0 is a constant with dimensions of length and u = (ux, uy). The no-slip
boundary condition corresponds to the particular case γ = 0.

Assuming a two-dimensional flow and solving for it in the swimming frame, state
the equation satisfied by the velocity streamfunction ψ and its boundary conditions. Non-
dimensionalise the problem and introduce ǫ ≡ y0k and δ ≡ kγ. Solve for the dimensionless
streamfunction at order ǫ for all values of δ. Show that the solution at that order is the
same as in the no-slip case. Compute the dimensionless swimming speed at order ǫ2 (you
do not need to solve for the entire flow field at order ǫ2). Deduce that slip (δ > 0) always
lead to faster swimming than a no-slip boundary condition.

[Hint: You can use without proving it that the general travelling-wave solution to ∇4f(x, y, t) =
0 is

f(x, y, t) = A+By+Cy2+Dy3+R

{

∑

n

[

Ene
−ny + Fne

ny + y(Gne
−ny +Hne

ny)
]

ein(x−t)

}

]

Part III, Paper 80



3

2

Locomotion is induced in a Newtonian fluid by the planar deformation of an
inextensible flagellum. Give the value of the hydrodynamic force density acting on
the flagellum using the framework of resistive-force theory and briefly explain how the
resistance coefficients depend on the fluid and geometrical parameters.

The shape of the flagellum is described in Cartesian coordinates by material points
[x, y(x, t)] where we assume |∂y/∂x| ≪ 1 everywhere. The flagellum is spatially-periodic
with period λ in the x direction and the deformations are periodic in time with period T .
Integrating the hydrodynamic forces, calculate the leading order time-averaged propulsive
force, Fx, acting on the flagellum over one wavelength in the x direction. Calculate the
leading-order time-averaged rate of working, Ẇ , of the flagellum against the fluid over one
wavelength.

Consider a functional J [y] ≡ Fx + Γ(Ẇ − Ẇ0) where Γ is a constant Lagrange
multiplier and Ẇ0 a constant. By considering a small periodic change in the shape of the
flagellum, y → y+ δy, calculate the resulting change in the functional, J → J + δJ . Using
integration by parts, and enforcing periodicity, derive the equation satisfied by y(x, t)
ensuring that δJ = 0 for all values of δy. Deduce that the deformation maximising the
propulsive force for a given rate of working is a travelling wave.

3

The fluid velocity induced at location x by a steady, low-Reynolds number, axisym-
metric swimmer located at x′ is well approximated by a stresslet

u(x) = G(x− x′), G(r) =
S

8πµ

[

−
r

r3
+

3(e · r)2r

r5

]

, r = |r|,

where µ is the dynamic viscosity of the fluid, e the unit vector along the swimmer (stresslet
direction), and S the constant stresslet strength. Explain the physical origin of this flow
field and how it can be obtained. Comment on the sign of S and its interpretation.

The centre of the swimmer is assumed to undergo circular motion centered at the
origin described in Cartesian coordinates as

[x′(t), y′(t), z′(t)] = R [cosωt, sinωt, 0] ,

where R > 0 is the radius of the circle and ω > 0 the frequency or rotation. Furthermore,
the swimmer rotates its shape so that its long axis, e(t), remains always tangent to the
circle. By considering a point far from the circle, |r| ≫ R, show explicitly that the flow
induced by the rotating swimmer averaged over one period of rotation is also a stresslet,
for which you will derive the strength, S̃, and direction, ẽ. Deduce that the time-averaged
flow is a pusher if the original is a puller, and vice-versa.
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