

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2015 1:30 pm to 4:30 pm

PAPER 75

BIOLOGICAL PHYSICS

There are **THREE** questions in total. Attempt all **THREE**. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Consider an infinite cylinder of radius a and negative linear charge density $-\lambda$ immersed in an electrolyte solution with an axisymmetric concentration n(r) of positive charges q and a dielectric constant ϵ . Write down the Poisson-Boltzmann equation relating the charge density $\rho(r) = qn(r)$ to the electrostatic potential $\phi(r)$, introducing an appropriate normalization factor n_0 for the concentration. By further introducing the change of coordinates $u = \ln(r/a)$ and $\Phi = \beta q \phi - 2u$, where $\beta = 1/k_B T$, show that the Poisson-Boltzmann equation takes the form

$$\frac{d^2\Phi}{du^2} = -\frac{4\pi\beta n_0 q^2 a^2}{\epsilon} \mathrm{e}^{-\Phi} \ .$$

Solve this for Φ , assuming $\Phi(a) = 0$ and that $\Phi \to \infty$ and $d\Phi/du \to 0$ as $u \to \infty$. Express the electric field magnitude E(r) for $r \ge a$ in terms of λ and ρ and thereby find an expression for the total screening charge density $Q_{\text{screening}}$ around the cylinder in terms of $\rho(r)$. Using the relationship between $d\phi/dr$ at r = a and λ , solve for the normalization constant n_0 . Show that "counterion condensation" occurs, such that $n_0 = 0$ for $\lambda < \lambda_c$ and $n_0 > 0$ for $\lambda > \lambda_c$, where $\lambda_c = q/\ell_B$, with ℓ_B the Bjerrum length. Show that $Q_{\text{screening}} = \lambda - \lambda_c$ for $\lambda > \lambda_c$.

$\mathbf{2}$

Suppose an elastic filament of length L and bending modulus A is held parallel to the x-axis, and *clamped* at its left end so that its (presumed small) displacement h(x)from the x-axis satisfies $h(0) = h_x(0) = 0$. If its right-hand end is unconstrained, state the boundary conditions on h that hold there. Using the form of the Euler-Lagrange equation for the appropriate functional for the bending energy, show that the shape of any function h(x) satisfying the above boundary conditions is of the general biharmonic form,

$$W_n(x) = B \sin k_n x + D \cos k_n x + E \sinh k_n x + F \cosh k_n x ,$$

where k_n is the *n*th root of the transcendental equation $\cos kL \cosh kL = -1$. Graphically or otherwise estimate the first positive root k_1 . From these results, show that

$$W_n(x) = N[(\sin q_n + \sinh q_n) (\cos k_n x - \cosh k_n x) - (\cos q_n + \cosh q_n) (\sin k_n x - \sinh k_n x)], \qquad (1)$$

where N is a normalization constant and $q_n = k_n L$. Calculate the mean squared fluctuation of the free end at temperature T. [You may use without proof the relationship $W_n(L)^2 = 4I_n$, where $I_n = (1/L) \int_0^L dx W_n(x)^2$.]

Part III, Paper 75

CAMBRIDGE

3

In the simplest model of so-called 'phase oscillators', the dynamics of an angular variable $\Delta(t)$ takes the form

$$\dot{\theta} = \omega - \epsilon \sin \theta + \xi(t) , \qquad (1)$$

where $\omega > 0$ is an intrinsic frequency difference, $\epsilon > 0$ is a coupling constant, and the Langevin noise is Gaussianly distributed with $\langle \xi \rangle = 0$ and $\langle \xi(t)\xi(t') \rangle = 2T_{\text{eff}}\delta(t-t')$, with T_{eff} an effective temperature.

(a) Examining first the noise-free case, show by graphing the right-hand-side of (1) that there is a pair of fixed points for $\theta \in (0, 2\pi)$ for $\omega < \epsilon$ and no fixed points for $\omega > \epsilon$. In the former case, find the fixed points analytically and determine the stability of both. In this type of overdamped dynamics, the right-hand-side of the equation can be interpreted as an effective force. Find the potential $V(\theta)$ which governs that force. Explain graphically or otherwise the distinction, in terms of $V(\theta)$ between the two regimes $\omega < \epsilon$ and $\omega > \epsilon$.

(b) When $T_{\rm eff} \neq 0$, the mechanical analogy deduced in (a) becomes a statistical physics problem in which θ is the coordinate of a Brownian particle moving on the 'landscape' $V(\theta)$. When the stable fixed point θ^* found in (a) exists and the $T_{\rm eff}$ is appropriately small, the particle exhibits noisy small-amplitude fluctuations around θ^* . Calculate the autocorrelation function $\langle \theta(t)\theta(t+\tau) \rangle$ in the limit of large t in that regime, expressing your answer in terms of ω , ϵ , and $T_{\rm eff}$. As the temperature is increased there will be an ever greater probability of crossing over potential energy barriers. Using general arguments about thermally-assisted hopping over potential barriers, deduce the relative probability $P = p_+/p_-$ of hopping from θ^* to $\theta^* + 2\pi$ versus from θ^* to $\theta^* - 2\pi$ when $\omega \ll \epsilon$.

END OF PAPER