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(a) Derive the linearized equations governing small amplitude internal gravity waves
in an otherwise quiescent stratified fluid of constant buoyancy frequency N0.
Determine the dispersion relation for plane waves with frequency ω and give an
expression for the phase velocity cp. What is the geometric relationship between
the phase velocity and the group velocity cg?

(b) Explain how the WKB approximation can be used to determine the behaviour of
an internal wave in a stratification when N = N(z), detailing any limitations and
assumptions. Suppose a non-uniform stratification is characterised by the height-
dependent buoyancy frequency

N(z) =
√

(16z)2 + 1. (⋆)

For a wave with ω = 1, use ray tracing under the WKB approximation to determine
the possible rays passing through (x, z) = (0, 1). What happens as the ray
approaches z = 0?

(c) Consider a trapezoidal basin described by 0 6 x 6 3(z + 2) for 0 6 z 6 1 that
contains a stratified fluid with buoyancy frequency N(z) given by (⋆). Use ray
tracing for an internal gravity wave of frequency ω = 1 to determine where an
upward propagating packet of energy released from (x0, 0) will next reflect from
the lower boundary. [You may assue that the packet undergoes exactly three
reflections before reaching the lower boundary again.] Hence or otherwise determine
the internal wave attractor that exists for this system. In what direction must the
energy packet propagate around the domain to form an attractor? What happens
to energy packets initially propagating in the opposite direction? For a real fluid,
what can limit the energy density achieved by the attractor?
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Consider a layer of fluid of depth h(x, t), velocity u(x, t) and density ρ(x, t) beneath
a deep quiescent ambient fluid of density ρ0. The layer is in a channel of width b that
varies with height as b(z) = βz for z > 0 and constant β. The channel is aligned with the
x axis and z is upwards. The density of the layer is given by ρ = (1 − φ)ρ0 + φρp, where
φ(x, t) is the volumetric concentration of particles of density ρp (> ρ0). The particles
sediment relative to the fluid with a vertical velocity w = w0f(φ).

(a) Describe briefly the Boussinesq and shallow water assumptions and how they may
apply to this flow. Under what conditions will the particle concentration remain
approximately uniform across the depth of the layer? Explain how sedimentation
can still occur.

(b) Derive the shallow water equations for the flow in this layer assuming φ ≪ 1 and
the volume of the layer is conserved. Assume also that the particle concentration
remains uniform across the width and depth of the layer, that sedimention is the
same as for horizontal boundaries, and that no secondary circulations develop.
Determine the characteristics of this flow and the ordinary differential equations
(for u, φ and c) describing the changes along these characteristics. (You need not
solve these ordinary differential equations.)

(c) Suppose that at t = 0 the layer is confined to the region 0 6 x 6 L with layer
depth h0 and particle concentration φ0. The dam at x = L that contained the layer
fails at t = 0. Explain why the shallow water equations are not appropriate for the
front of the current that develops. Give a suitable condition for the speed of the
front. Derive an integral model for the late time evolution of the current for the
case f(φ) = 1− φ and determine the run-out length of the current.
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Figure 1: (a) Square pack-
ing. (b) Alternate pack-
ing.

Consider a bidisperse laminar suspension comprising particles
with concentrations φ1 and φ2 that are identical apart from
their radii, r1 and r2. There is no particle diffusion and the
suspension, in a container of height H, is quiescent apart
from particle settling and slow mixing. Particle settling is
independent for each species and is governed by W (φi, ri) =
Ws(ri)(1− φi/φmax), where Ws(ri) is the settling velocity for
isolated particles of radius ri, and φi 6 φmax. Consider the
settling process at the bottom as an instantaneous transition
to φ = φmax in the deposit.

(a) Determine the packing fraction for a square 2D packing of uniform cylinders with
radius r1 (see figure 1a) and the packing fraction for an alternate packing of equal
number of cylinders of radii r1 and r2 (see figure 1b). What ratio r1/r2 gives the
highest packing fraction?

(b) Change to spherical particles in a 3D geometry. Determine the ratio Ws(r1)/Ws(r2)
for both low and high particle Reynolds numbers Rep.

(c) For low Rep, consider a suspension containing only particles with radius r1 = a and
initial concentration φ1 = φmax/8, and assume settling occurs in a perfect square
arrangement (the 3D equivalent of figure 1a) where a fully settled particle packing
satisfies hc/H = φ1/φmax, with hc the thickness of the deposit. Derive the general
shock condition. Calculate the shock velocity U1 between the cleared fluid and
the settling suspension, and the shock velocity U2 between the settling suspension
and the settled particles at the bottom. Show that the process comes to rest after
tc = H/Ws(a) when the particles reached a height hc = H/8. Sketch a phase-space
diagram of time tc as a function of height hc with the shocks drawn in.

(d) Change now to a bidisperse settling suspension of both large (r1 = a) and small
(r2 = a/2) particles with uniform initial concentrations φ1 = φ2 = φmax/8. Assume
the particle packing satisfies h2/H = (φ1 + φ2)/φmax. Show that three shocks form
initially with velocities Û1, Û2, Û3. Show that Û3 = −

35
192Ws(a) and determine Û1

and Û2. Show that at t1 =
192
203

H
Ws(a)

two of the shocks merge, after which time only

the small particles remain in suspension. For time t > t1, determine the speed Û4

of the merged shock. Sketch the evolution of the system in a phase-space diagram
indicating the position of the shocks, t1 and h1, and also time t2 and height h2 of
a fully settled suspension. Sketch the composition (as a function of height) of the
final deposit in terms of percentage of large and small particles.
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A time-dependent turbulent plume rises in the positive z direction from a line source
located along (x, y, z) = (0, y, 0) in a homogeneous quiescent environment of density ρ0.
The velocity and density fields within the plume vary as ŵ(x, z, t) = W (z, t)f(x/b) and
ρ̂(x, z, t) = ρ0+(ρ(z, t)−ρ0)f(x/b), where W and ρ are the centreline velocity and density,
respectively. Here, the profiles are assumed to be triangular such that
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and b(z, t) is the half-width of the plume.

(a) Determine, per unit length in the y direction, the plume volume, mass, momentum
and buoyancy in terms of W , ρ and b. Determine also the fluxes (again per unit
length) of volume V , mass Q, momentum M and buoyancy F .

(b) Explain the idea behind ‘Batchelor entrainment’ and the entrainment coefficient α,
and give a suitable expression for entrainment into the plume.

(c) Derive the time-dependent equations of motion for the plume in terms of W , ρ and
b. Hence or otherwise show that a Boussinesq plume satisfies
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(d) Determine the time-dependent similarity solution for Q, M and F for t > 0.
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