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(a) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow. Use this representation, explaining your choice of trial harmonic potentials,
to determine the velocity field due to a point force of magnitude F in unbounded fluid.

(b) A constant force F = 6πµaV acts on a rigid sphere of radius a at position
x = X(t). A second rigid sphere of radius a is held stationary at x = 0.

Assuming that a ≪ R, where R = |X|, find the leading-order approximations to
the force and the couple that must be applied to the second sphere to keep it stationary.
State the order of the next correction to the force, and state where it comes from.

Deduce the leading-order correction to the velocity of the first sphere due to the
presence of the second sphere, and state the order of the next correction. Show also that
the first sphere rotates with angular velocity

Ω = −
9a2

16

V ∧X

R4
+O(V a4/R5).

[You may assume the Faxén formulae

U =
F

6πµa
+ u∞ +

a2

6
∇2u∞ , Ω =

G

8πµa3
+

1

2
ω∞ ,

but should explain how you apply them.]

(c) Cartesian coordinates are defined for the problem in part (b) such that X(t) =
(X(t), Y (t), 0) and V = (V, 0, 0), where V > 0. Explaining any approximations, show that
the path of the first sphere satisfies

dY

dX
= −

27a2

16

XY

R4
.

As t → −∞, it is given that Y (t) → Y∞, where Y∞ ≫ a. Find leading-order
approximations to (i) the maximum value of the small deflection Y (t) − Y∞ and (ii) the
angle the sphere has rotated by as t → ∞.

What happens to Y (t) as t → ∞ and why? Would your answer be the same if
Y∞ = 1

100
a? Justify your answer briefly.
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Write down the extensional-flow equations governing the evolution of a long thin
axisymmetric column of fluid with viscosity µ, radius a(z, t) and axial velocity w(z, t),
under an axial body force f and external pressure pext(z).

Such a column of fluid, with density ρ + ∆ρ, is placed on the axis of a vertical
cylindrical container of slightly larger radius R. The column sits on the closed base of the
container, z = 0. The thin annular gap, of width h(z, t) ≪ R, between the fluid column
and the container is filled with a second fluid of much smaller viscosity λµ and density ρ.
The fluid column slumps axisymmetrically due to its greater density.

Use physical reasoning and scaling arguments to show that the variation in w across
the fluid column is negligible provided λ ≪ h2/a2. Assume below that this condition holds.

Use lubrication theory and mass conservation to determine the (modified) pressure
gradient in the annular gap in terms of a and w. Deduce dimensional evolution equations
for the column.

For the case λ = 0, and an initially cylindrical column of radius a0 and height L0,
show that the vertical velocity at the top of the column at t = 0 is −∆ρgL2

0
/6µ.

For the case λ 6= 0, find scales ẑ, t̂ and ŵ such that φ = a2/R2 and W = w/ŵ satisfy
dimensionless equations of the form

1

φ

∂

∂Z

(

φ
∂W

∂Z

)

= 1 +
α(φ)W

α0

(1)

∂φ

∂T
+

∂

∂Z
(φW ) = 0, (2)

where the dimensionless function α(φ) should be defined and α0 = α(a2
0
/R2).

For an initially cylindrical column of radius a0 and height L0 = Λ0ẑ, determine the
dimensionless vertical velocity W (Z, 0) at T = 0 as a function of the dimensionless height
Λ0. Deduce the rate of thickening of the column ∂φ/∂T at T = 0.

Find and sketch the limiting forms of these results as functions of Z for each of the
cases Λ0 ≫ 1 and Λ0 ≪ 1. Describe the dominant physical balances in the two cases, and
give a physical interpretation of the meaning of the vertical scale ẑ.

Part III, Paper 73 [TURN OVER



4

3

Insoluble surfactant with concentration C(x, t) resides on the surface of a thin layer
of fluid of thickness h(x, t), viscosity µ and density ρ that lies on a rigid horizontal surface.
Diffusion of surfactant is negligible, and the coefficient of surface tension is given by
γ(C) = γ0 −AC, where γ0 and A are constants. The variations of h and C are such that
lubrication theory is applicable throughout.

Explain why
∂C

∂t
+

∂[u(h)C]

∂x
= 0,

where u(h) is the horizontal velocity at the surface. Show that

∂h

∂t
=

A

2µ

∂

∂x

(

h2
∂C

∂x

)

+
ρg

3µ

∂

∂x

(

h3
∂h

∂x

)

−
1

3µ

∂

∂x

(

h3
∂

∂x

(

γ
∂2h

∂x2

)

)

, (∗)

and obtain the corresponding equation for the evolution of C.

Assume that the hydrostatic and capillary pressure gradients are both negligible.
A fixed mass M =

∫

C dx of surfactant is released at x = 0 and t = 0 onto a layer that
initially has uniform thickness h0 and C = 0. Use scaling arguments to show that the
extent −xN 6 x 6 xN of the spreading pool of surfactant satisfies xN (t) ∝ t1/3 and also
determine the dependence on the other dimensional parameters.

Deduce the form of the similarity solution and derive two ordinary differential
equations and two integral constraints that are satisfied by the dimensionless similarity
functions H(η) and Γ(η) over the range 0 6 η 6 ηN (assuming symmetry about η = 0).
Solve the differential equations to show that H and Γ are linear functions of η, and use
the integral constraints to show that

xN = (6MAh0t/µ)
1/3, and h = 2h0 at x = xN−.

Explain why the hydrostatic and capillary terms in (∗) cannot both be negligible
near x = xN . Let ∆ be the width of the region where at least one of these terms is
significant. Use scaling arguments to show that when g = 0

∆ ∼ (γ0h
2

0x
2

N/AM)1/3 ∝ t2/9 .

[Assume that ∂C/∂x continues to scale like M/x2N .]

Find the corresponding result for ∆ when g 6= 0 and ∆2 ≫ γ0/g. Deduce that there
is a time t∗ when ∆ ∼ xN . Explain briefly what happens to the fluid layer when t ≫ t∗.
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A long cylindrical tube of length L and radius a ≪ L is immersed in a large volume
of viscous fluid. The tube is held fixed with its axis vertical, and is open at both ends so
that it is both filled with and surrounded by fluid. A heavy sphere of radius a(1 − 1

2
ǫ),

where ǫ ≪ 1, falls down the axis of the tube at velocity U .

Explaining any approximations made, show that the flux Q out of the bottom of
the tube is related to the pressure difference ∆P across the sphere by

Q =
πa4∆P

8µL
. (1)

Use lubrication theory to show that

∆P

6µ
= 2qI3 − UI2 , (2)

where q = (πa2U −Q)/2πa (3)

and the constants In are to be determined as multiples of ǫ
1

2
−n

∫

∞

−∞

(1 + ξ2)−n dξ.

By considering the forces acting on a suitable fluid control volume, show further
that the upward force F on the sphere is given by

F = πa2∆P + 2πaµ(4UI1 − 6qI2). (4)

Let dimensionless variables be defined by

Q∗ =
Q

πa2U
, ∆P ∗ =

∆Pa

6µU
, q∗ =

2q

aU
, F ∗ =

F

6πµaU
, I∗n = an−1In, L∗ =

4L

3a
.

Express (1)–(3) in terms of these variables and solve for Q∗, ∆P ∗ and q∗. Hence obtain

F ∗ =
L∗I∗

3
+ (4

3
I∗
1
I∗
3
− I∗2

2
)

L∗ + I∗
3

explaining any approximations made. Deduce that F ∗ takes distinct asymptotic forms
when (i) L∗ ≪ ǫ−1/2, (ii) ǫ−1/2 ≪ L∗ ≪ ǫ−5/2 and (iii) L∗ ≫ ǫ−5/2, and find the
corresponding leading-order approximations.

By considering the size of Q∗, q∗ and F ∗/∆P ∗, describe the dominant flow pattern
and the dominant force balance in each of the three regimes.

Hence explain physically, without detailed calculation, why the force on the sphere
decreases by a factor of 2 in one of the three regimes, but is unchanged in the other two,
when there is a second sphere of the same radius also moving with velocity U down the
tube.
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