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(a) Find the first two nonzero terms in the expansion for all real roots of the quintic
equation

t5 − ǫt3 + ǫ3 = 0

as ǫ → 0.

(b) Consider the integral

f(x) =

∫ 1

0
(lnt) exp(ixt)dt

as x → ∞. By suitably deforming the integration contour, show that

f(x) ∼ − ilnx

x
− iγ + π/2

x
+

exp(ix)

x2
+O(x−3) ,

where γ is Euler’s constant. You are given that

∫

∞

0
lnu exp(−u)du = −γ .

(c) Consider

I(λ) =

∫ b

−∞

exp(λφ(t))dt ,

where
φ(t) = t3 − 2t2 + t

and b is a real positive constant. Determine the first nonzero term in the expansion of I
as λ → ∞, being careful to identify the behaviours found for different values of b.
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(a) Consider the differential equation

d2x

dt2
+ ǫf(x)

dx

dt
+ x = 0 ,

subject to x = dx/dt = 1 when t = 0, where ǫ ≪ 1 and f(x) is a given function. Find
the leading-order approximation to x(t; ǫ) which is uniformly valid for t 6 O(1/ǫ) when
(i) f(x) = x2 − 1; (ii) f(x) = sinx.

[Hint: in (ii) write sinx as a power series.]

(b) Consider the double integral

h(λ) =

∫

A
α(x, y) exp(iλβ(x, y))dxdy

over the area A, and suppose that ∇β = 0 at a single point in A. By using the method of
stationary phase, determine the asymptotic behaviour of h(λ) as λ → ∞. [Hint: consider
the matrix of second partial derivatives of β.]
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The function y(x) satisfies the differential equation

ε2
d2y

dx2
− ε2

x

dy

dx
− 4x2y = 1 ,

where 0 < ε ≪ 1. Verfiy that a solution such that

y → 0 as x → ∞ with arg(x) ∈ [0, π2 ),

is given, for appropriate choices of θ1 and θ2 (which should be specified), by

y =
1

4ε

(

ex
2/ε

∫ x

∞ eiθ1

e−t2/ε

t
dt− e−x2/ε

∫ x

∞ eiθ2

et
2/ε

t
dt

)

,

where the limit ∞ eiϕ indicates that the integration contour tends to infinty along a line
with argument ϕ. From this solution, find the leading term of the asymptotic expansion
as x → ∞ if arg(x) ∈ [0, π2 ). Identify the anti-Stokes lines, and the range of arg(x) for
which the solution decays as x → ∞.

Show that, formally, a consistent asymptotic solution for 0 < ε ≪ 1, assuming that
it exists, is given by

y(x) ∼ − 1

4x2

∞
∑

r=0

ar
ε2r

x4r

where the coefficients ar are to be determined.

Optimally truncate this asymptotic expansion, and find an expression for the
remainder when arg(x) = O(ε

1

2 ). Comment on your answer.

Hints.

• You may find it helpful to consider the integral

J(λ, n) =

∫

∞

0

t2n

1− t2
exp(λ(1 − t)) dt .

• You may quote the result that

∫

∞

0

t2n

1 + t
exp(λ(1 − t)) dt ∼ 1

2

( π

2n

)
1

2

exp(−µ2/8) ,

when
λ = 2n+ iµn

1

2 + ν , µ = O(1), ν = O(1) and n ≫ 1 .

• Recall also that

erf(x) =
2√
π

∫ x

0
exp(−t2) dt, where erf(∞) = 1 .
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Suppose that there is a steady two-dimensional incompressible unidirectional flow

ū = (U(y), 0) ,

in the half-space y > 0 above a rigid boundary. Assume dimensionless variables and that

U(y) ∼ y for 0 6 y ≪ 1 (and hence that U(0) = 0) ;

U(y) → 1 as y → ∞ .

Consider the linear stability of this flow by writing

(ū, v̄, p̄) = (U(y), 0, 0) + ε(u(y), v(y), p(y)) eiα(x−ct) + . . . ,

where 0 < ε ≪ 1, α is the (real) streamwise wavenumber, c is the (complex) wavespeed,
and u, v and p represent the velocity and pressure perturbations. On substituting into
the conservation of mass and Navier-Stokes equations, and linearising, the perturbation
equations are found to be

iαu+ v′ = 0 , (1)

iα(U − c)u+ U ′v = −iαp + 1
R (u

′′ − α2u) , (2)

iα(U − c)v = −p′ + 1
R (v

′′ − α2v) , (3)

where R is the Reynolds number. Appropriate boundary conditions are

u = v = 0 on y = 0 ,

u → 0 , v → 0 as y → ∞ .

Derive an equation satisfied by the Laplacian of the pressure perturbation, and state an
expression for the value of p on y = 0.

Assume that the Reynolds number, R, is large and that the streamwise wavenumber,
α, is small (but not too small); specifically, assume that R−

1

7 ≪ α ≪ 1. Make the
hypothesis that a thin “lower” layer of thickness δ exists adjacent to the boundary y = 0,
and that within this lower layer (a) both terms in equation (1) balance, and (b) all terms,
except the last term, in equation (2) balance. Explain why a suitable inner scaling is

y = δY = (αR)−
1

3Y , and why a suitable scaling for the wavespeed is c = δC. Also deduce
scalings for v and p in terms of α and R on the assumption that u = O(1) in the lower
layer. Hence show that

i(Y −C)uY = uY Y Y .

Solve for u and p within the lower layer, and find their values as Y → ∞.

Match the lower-layer solution with a leading-order solution for y = O(1). How does
the pressure vary across this y = O(1) “middle” layer? Find an expression for v as y → ∞.
Deduce that an “upper” layer, say with scaling y = ∆z (where ∆ is to be identified), is
required. Solve in this upper layer and match to the middle layer. By assuming that
α = kR−

1

4 , derive a dispersion relation between k and C.

Hint. Recall that the Airy function, Ai(ζ), satisfies

Ai′′(ζ)− ζAi(ζ) = 0 ,

and that Ai(ζ) decays exponentially to zero as |ζ| → ∞ if | arg(ζ)| < π/3.

Part III, Paper 72 [TURN OVER



6

END OF PAPER

Part III, Paper 72


