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Let the complex valued function q(x, t) satisfy

iqt + qxx = 0, 0 < x <∞, 0 < t < T, (1)

where T is a positive finite constant.

(a) Express q as an integral in the complex k-plane.

(b) Consider (1) together with

q(x, 0) = q0(x),

q(0, t) = g0(t),

0 < x <∞,

0 < t < T,

(2a)

(2b)

where q0 and g0 have sufficient smoothness, q0 has sufficient decay as x → ∞, and
q0(0) = g0(0). Obtain a uniformly convergent integral representation for q(x, t) in
terms of the given data, and verify that q(x, t) satisfies (1) and (2).

(c) Use (a) and q = u+iv, u, v real, to solve the following initial-boundary value problem
for the elastic wave eq:

utt + uxxxx = 0,

u(x, 0) = u0(x),

u(0, t) = ũ0(t),

0 < x <∞,

ut(x, 0) = u1(x),

uxx(0, t) = ũ1(t),

0 < t < T

0 < x <∞

0 < t < T,

where the given functions u0, u1, ũ0, ũ1 have sufficient smoothness, u0, u1 have
sufficient decay as x→ ∞, and u0(0) = ũ0(0), u

′′

0
(0) = ũ1(0), ũ

′

0
= u1(0).
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Let the real valued function q(x, y) satisfy the following boundary value problem,

qxx + qyy = 0,

− qy(x, 0) + γq(x, 0) = 0,

qy(x, ℓ) + γq(x, ℓ) = 0,

qx(0, y) = g(y),

0 < x <∞, 0 < y < ℓ,

0 < x <∞

0 < x <∞

0 < y < ℓ

where ℓ > 0, γ, are constants, and g(y) is a given real, smooth function satisfying
g(y) = g(ℓ− y).

(a) Let subscripts 1,2,3 refer to the sides

{y = 0, 0 < x <∞}, {x = 0, 0 < y < ℓ}, {y = ℓ, 0 < x <∞}, (1)

respectively. Let {Gj(k)}
3

j=1
denote the appropriate transforms of qz, i.e.

Gj(k) =

∫ zj+1

zj

e−ikzqzdz, z1 = ∞, z2 = 0, z3 = iℓ, (2)

where z4 ≡ z1 and set

ψ(−ik) =
1

2

∫

∞

0

e−ikxq(x, 0)dz, φ(k) =
1

2

∫ ℓ

0

ekyqy(0, y)dy .

Express G1(k), G3(k), in terms of q(0, 0) and the unknown function ψ(−ik). Express
G2(k) in terms of the unknown function φ(k).

(b) Use the global relation to express both ψ(−ik) and φ(k) in terms of ψ(ik).

(c) Use the integral representation for q(x, y)

qz =
1

2π

(
∫

∞

0

eikzG1(k)dk +

∫ i∞

0

eikzG2(k)dk +

∫

−∞

0

eikzG3(k)dk

)

(3)

to show that ψ(ik) does not contribute to the solution.
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Obtain two global relations associated with real solutions of the modified Helmholtz
equation.

Use these global relations to derive a semi-analytical scheme to integrate numerically
the Dirichlet problem of the above equation formulated in the interior of a square with
corners at (−1, 1), (−1,−1), (1,−1), (1, 1). In particular, verify that there exists a choice
of collocation points associated with each side, such that the effect on the other sides
becomes small as the value of the collocation parameter becomes large.
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