

MATHEMATICAL TRIPOS Part III

Wednesday, 3 June, 2015 1:30 pm to 4:30 pm

PAPER 7

SEMIGROUPS OF OPERATORS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Suppose that μ is a Borel measure on a locally compact metric space (X, d) and that f is a non-negative continuous function on X. If $f \in C_0(X)$ (the space of continuous functions f on X for which $f(x) \to 0$ as $x \to \infty$) or if $f \in L^2_{\mu}$, and if $t \ge 0$ let $P_t(f) = e^{-k(x)t}f(x)$, where k is a non-negative continuous function. In each case, show that $(P_t)_{t\ge 0}$ is a contraction semigroup.

In each case, determine the infinitesimal generator L of the semigroup, determine its domain D(L) and show directly that L is a closed operator.

Explain how such semi-groups can be used to investigate the heat semigroup acting on L^2_{λ} and the Ornstein-Uhlenbeck semigroup acting on L^2_{γ} (you need only consider the one-dimensional cases). In each case, determine the spectrum of L and show that their infinitesimal generators are self-adjoint.

Does the heat semigroup satisfy a Poincaré inequality? Does the Ornstein-Uhlenbeck semigroup satisfy a Poincaré inequality? Justify your answers.

$\mathbf{2}$

Suppose that (X, d) is a compact metric space. What is a *Feller semigroup* of operators on C(X)?

Suppose that $(P_t)_{t\geq 0}$ is a contraction semigroup on C(X) with infinitesimal generator L. Show that if $1 \in D(L)$ and L(1) = 0 then $(P_t)_{t\geq 0}$ is a Feller semigroup.

Suppose now that $(P_t)_{t\geq 0}$ is a Feller semigroup on C(X) with infinitesimal generator L. Establish the existence of transition probabilities.

What is an *invariant* probability measure on X? Show that if μ is an invariant probability measure on X, if $1 \leq p < \infty$ and if $f \in C(X)$ then $||P_t(f)||_p \leq ||f||_p$ for t > 0, and that $||P_t(f) - f||_p \to 0$ as $t \to 0$.

Suppose that f and f^2 are in D(L). Show that $L(f^2) \ge 2fL(f)$.

Let ν be a Borel probability measure on X. If $f \in C(X)$, let

$$\phi_n(f) = \frac{1}{n} \int_0^n \left(\int_X P_s(f) \, d\nu \right) ds.$$

Explain briefly why there exist a subsequence (ϕ_{n_k}) and a Borel probability measure μ such that $\phi_{n_k}(f) \to \int_X f \, d\mu$ as $k \to \infty$, for all $f \in C(X)$. Show that μ is an invariant probability measure.

CAMBRIDGE

3

Suppose that A is a symmetric closed linear operator on a Hilbert space H, with dense domain. What does it mean to say that A is *self-adjoint*? Show that if A is self-adjoint then $\sigma(A) \subseteq \mathbf{R}$.

Suppose that T is a bounded self-adjoint operator on a Hilbert space H. Define the numerical range W(T) and the numerical radius w(T) of T. Show that $\sigma(T) \subseteq \overline{W(T)} \subseteq \mathbf{R}$.

Show that $\alpha = \inf W(T)$ and $\beta = \sup W(T)$ are approximate eigenvalues of T.

Suppose that A is a self-adjoint closed linear operator on H with dense domain. Show that A is positive semi-definite if and only if $\sigma(A) \subseteq [0, \infty)$.

$\mathbf{4}$

Let G be the group D_2^d , with Haar measure μ . Define the *Bernoulli functions* ϵ_i and *Walsh functions* w_A on G, and show that the Walsh functions form an orthonormal basis for $L^2(G)$.

If $\omega, \eta \in G$, set $\omega \sim \eta$ if $\omega_i \neq \eta_i$ for exactly one index *i*. If $f \in L^2(G)$, set

$$L(f)(\omega) = \frac{1}{2} \sum_{\eta \sim \omega} (f(\eta) - f(\omega)).$$

Detremine the eigenvectors and eigenvalues of L, and show that L is a negative semidefinite operator on $L^2(G)$.

By applying L to a suitable function f show that if a_1, \ldots, a_d are elements of a normed space $(E, \|.\|)$ then

$$\int_G \|\sum_{i=1}^d a_i \epsilon_i\|^2 \, d\mu \leqslant 2 \left(\int_G \|\sum_{i=1}^d a_i \epsilon_i\| \, d\mu \right)^2.$$

Suppose that η_1, \ldots, η_d are independent random variables, each uniformly distributed on $\mathbf{T} = \{z : |z| = 1\}$, and that a_1, \ldots, a_d are complex numbers. Show that

$$\sum_{i=1}^d |a_i|^2 \leqslant 2 \left(\mathbf{E} |\sum_{i=1}^d a_i \eta_i| \right)^2.$$

Part III, Paper 7

[TURN OVER

UNIVERSITY OF

 $\mathbf{5}$

Let γ denote standard Gaussian measure on **R**. Define the creation operator a^+ , the annihilation operator a^- and the number operator N. Define the Hermite polynomials, and show that they are the eigenfunctions of N. (You may assume that the polynomial functions are dense in $L^2(\gamma)$.)

Show that N is positive semi-definite. How is N used to define the Ornstein-Uhlenbeck semigroup $(P_t)_{t\geq 0}$? Show that $P_t(f) \to \int f \, d\gamma$ as $t \to \infty$, and that $dP_t(f)/dx = e^{-t}P_t(df/dx)$.

Suppose that f is a differentiable function with continuous bounded derivative, that $f(x) > \epsilon$ for all $x \in \mathbf{R}$ and that $||f||_1 = 1$. Find an expression for the energy $\mathcal{E}_{\gamma}(f)$. Show that $\operatorname{Ent}_{\gamma}(f^2) \leq 2\mathcal{E}_{\gamma}(f)$.

(You may assume that if g is a bounded continuous function, then $(P_t(g))^2 \leq P_t(g^2/f).P_t(f).$)

END OF PAPER