MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2015 1:30 pm to 4:30 pm

PAPER 69

APPROXIMATION THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

i) State the Korovkin theorem in its most general form, i.e., give a sufficient condition for the uniform convergence $U_n(f) \to f$ for a sequence $(U_n)_{n=1}^{\infty}$ of positive linear operators $U_n : C(K) \to C(K)$, where K is compact. As a corollary derive a sufficient condition for the periodic case when $C(K) = C(\mathbb{T})$, the space of 2π -periodic continuous functions.

ii) For a 2π -periodic function $f \in C(\mathbb{T})$, let $s_n(f)$ be its partial Fourier sum of degree n, and let $\sigma_n(f) = \frac{1}{n} \sum_{i=0}^{n-1} s_i(f)$ be its Fejer sum of degree n-1.

Using the Korovkin theorem prove that $\sigma_n(f) \to f$ as $n \to \infty$ for all $f \in C(\mathbb{T})$. You may use the integral representation for the Fourier sum

$$s_n(f,x) = \frac{1}{\pi} \int_{\mathbb{T}} D_n(x-t)f(t) dt, \qquad D_n(x) = \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{1}{2}x},$$

and the fact that s_n is an orthogonal projector onto \mathcal{T}_n .

iii) Prove that the only positive linear operator $U: C(\mathbb{T}) \to C(\mathbb{T})$ such that

$$U(p_i) = p_i$$
 where $p_i \in \{1, \sin x, \cos x\}$

is the identity operator.

 $\mathbf{2}$

A) Define a multiresolution analysis of $L_2(\mathbb{R})$ with a generator ϕ and explain how it is related to existence of an orthonormal wavelet ψ .

B) Prove that the following properties of ϕ

1)
$$\phi(x) = \sum_{n} a_n \phi(2x - n),$$
 2) $\{\phi(\cdot - n)\}_{n \in \mathbb{Z}}$ is an orthonormal sequence

are equivalent to

1')
$$f(2t) = m(t)f(t), \quad m(t) = \frac{1}{2}\sum_{n} a_{n}e^{-int},$$

2') $\sum |f(t+2\pi k)|^{2} \equiv 1$ a.e.

where f is the Fourier transform of ϕ , i.e., $f(t) = \widehat{\phi}(t) = \int_{\mathbb{R}} \phi(x) e^{-ixt} dx$.

C) Verify that conditions 1') - 2') are fulfilled for the function $f = \hat{\phi}$ defined as

$$f(t) = \begin{cases} 1, & t \in [-\pi, \pi) \\ 0, & \text{otherwise} \end{cases}$$

Using the inverse Fourier transform or otherwise, determine the corresponding generator ϕ .

3

Let j_n be the Jackson operator, i.e., for a 2π -periodic function f from $C(\mathbb{T})$,

$$j_n(f,x) := \int_{-\pi}^{\pi} f(x-t) J_n(t) \, dt, \quad J_n(t) := \frac{3}{2\pi n(2n^2+1)} \frac{\sin^4 \frac{nt}{2}}{\sin^4 \frac{t}{2}}, \quad \int_{-\pi}^{\pi} J_n(t) \, dt = 1.$$

Carefully justifying each step prove that, for any $f \in C(\mathbb{T})$, we have the estimate

$$\|j_n(f) - f\| \leqslant c \,\omega_2(f, \frac{1}{n}),$$

where $\omega_2(f,t)$ is the second modulus of smoothness of f.

Hence, proving the relevant property of $\omega_2(f,t)$, show that if f is twice continuously differentiable, then

$$E_n(f) \leq \frac{c_1}{n^2} ||f''||_{C(\mathbb{T})}.$$

 $\mathbf{4}$

a) State the Kolmogorov criterion for the element of best approximation to a realvalued function $f \in C[0, 1]$ from a linear subspace \mathcal{U} of C[0, 1].

b) From this criterion, derive the Chebyshev alternation theorem for the element of best approximation to a function $f \in C[0, 1]$ from \mathcal{P}_n , the space of all algebraic polynomials of degree $\leq n$.

c) From first principles, prove that, for any $f \in C[-1, 1]$, the polynomial of best approximation is unique. (Just referring to Haar's unicity theorem is not acceptable, but you may use arguments similar to those in its proof.)

$\mathbf{5}$

Given a knot sequence $\Delta = (t_i)_{i=1}^{n+k}$, let ω_i and $\ell_i(\cdot, t)$ be polynomials in \mathcal{P}_{k-1} defined by

1)
$$\omega_i(x) := (x - t_{i+1}) \cdots (x - t_{i+k-1}),$$

2)
$$\ell_i(\cdot, t)$$
 interpolates $(\cdot - t)_+^{k-1}$ on $x = t_i, ..., t_{i+k-1}$.

Further, let

$$N_i := (t_{i+k} - t_i)[t_i, \dots, t_{i+k}](\cdot - t)_+^{k-1}$$

be the B-spline of order k with the knots t_i, \ldots, t_{i+k} .

a) Prove Lee's formula

$$\omega_i(x)N_i(t) = \ell_{i+1}(x,t) - \ell_i(x,t), \qquad \forall x, t \in \mathbb{R},$$

and derive from it the Marsden identity:

$$(x-t)^{k-1} = \sum_{i=1}^{n} \omega_i(x) N_i(t), \quad t_k < t < t_{n+1}, \quad \forall x \in \mathbb{R}.$$

b) From the Marsden identity, find the coefficients $a_i^{(m)}$ in the B-spline representation of monomials t^m :

$$t^m = \sum_{i=1}^n a_i^{(m)} N_i(t), \quad t_k < t < t_{n+1}, \quad \text{for} \quad m = 0, \dots, k-1.$$

6

1) Let X be an inner product space with the scalar product (\cdot, \cdot) and the norm $||x|| := (x, x)^{1/2}$, and let \mathcal{U}_n be an *n*-dimensional subspace.

a) Prove that $u^* \in \mathcal{U}_n$ is the best approximation to $x \in \mathbb{X}$ from \mathcal{U}_n if and only if

$$(x - u^*, v) = 0 \quad \forall v \in \mathcal{U}_n.$$

b) Let $(u_j)_{j=1}^n$ be a basis for \mathcal{U}_n and let $G = ((u_i, u_j))_{i,j=1}^n$ be the corresponding Gram matrix. Prove that the elements of the Gramian inverse $G^{-1} = (b_{jk})$ are

$$b_{jk} = (\widehat{u}_j, \widehat{u}_k)$$

where (\hat{u}_k) is the dual basis, i.e., $(u_i, \hat{u}_k) = \delta_{ik}$. (*Hint.* Use $\delta_{ik} = (G \cdot G^{-1})_{ik}$.)

2) Let (N_i) and (M_i) be the B-spline bases of degree k-1 with the L_{∞} - and L_1 -normalizations, respectively, defined on a knot sequence $\Delta = (t_i)_{i=1}^{n+k} \subset [0,1]$.

Given $f \in C[0,1]$, let

$$P_{\mathcal{S}}(f) := s^* = \sum_{j=1}^n a_j N_j$$

be the orthogonal projection of f onto $S := \text{span}(N_j)$ with respect to the ordinary inner product $(f,g) = \int_0^1 f(x)g(x) dx$. Then P_S is also well defined as an operator from C[0,1] onto C[0,1].

Carefully justifying each step, show that the max-norm of $P_{\mathcal{S}}$ satisfies the inequality

$$\|P_{\mathcal{S}}\|_{\infty} \leqslant \|G^{-1}\|_{\ell_{\infty}}$$

where $G = \{(M_i, N_j)\}_{i,j=1}^h$ is the Gram matrix.

3) From the definition

$$M_i(t) := k[t_i, \dots, t_{i+k}](\cdot - t)_+^{k-1}$$

prove that the B-splines of degree k-1 have finite support. Hence find the bandwidth of the Gram matrix $G = (M_i, N_j)$, i.e., the integer d such that

$$G_{ij} = 0$$
 if $|i - j| \ge d$

END OF PAPER

Part III, Paper 69