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(a) For a system of qudits, let AX and BY be operators that act non-trivially only
on qudits in the sets X and Y . AX(t) denotes the time-evolution of AX in the
Heisenberg picture.

Let Z range over k-element subsets of the qudits, and let H =
∑

Z hZ be a
k-local Hamiltonian where hZ acts non-trivially only on the subset Z.

Assume that H satisfies the Lieb-Robinson bound:

‖[AX(t), BY ]‖ 6 2 ‖AX‖ ‖BY ‖ min(|X|, |Y |) e−µd(X,Y )
(

e2kst − 1
)

,

where d(X,Y ) denotes interaction distance, and µ and s are constants.

You may use without proof the fact that, for any operator OAB ∈ B(CdA ⊗CdB ),

TrB[OAB ]⊗ 1B = dB

∫

dU(1⊗ U)OAB(1⊗ U †)

where the integral is over the Haar measure for the unitary group SU(dB), nor-
malised such that

∫

dU = 1.

Prove that there exists an operator AX(l) acting non-trivially only on qudits within
the subset X(l) = {i : d(i,X) 6 vt+ l}, such that

∥

∥AX(t)−AX(l)(t)
∥

∥ 6 µvt|X|‖AX‖e−µl/2,

where v > 0 is a constant, and find an expression for v in terms of the parameters
of the system.

(b) Consider a 1-dimensional chain of qudits with nearest-neighbour Hamiltonian H =
∑

i(1 − Pi,i+1), where Pi,i+1 are projectors that act non-trivially only on qudits i
and i+ 1.

Assume that H has a unique ground state |ψ0〉, spectral gap ∆ > 0, and is
frustration-free, i.e. ∀i : Pi,i+1 |ψ0〉 = |ψ0〉.

Let Podd :=
∏

i P2i−1,2i, Peven :=
∏

i P2i,2i+1, and K := PoddPeven. The
Detectability Lemma states that:

‖K|suppH‖ 6
1

(

∆
2 + 1

)1/3
.

(i) Using the Detectability Lemma, or otherwise, show that
‖Km − |ψ0〉〈ψ0|‖ 6 O(e−αm) for some constant α, and find an expression for
α in terms of the parameters of the Hamiltonian.

(ii) Let Ax be an operator that acts non-trivially only on qudit x of the chain.
Construct an operator Ax(m) acting non-trivially only on qudits within
distance m of x, such that

∥

∥(|ψ0〉〈ψ0|)Ax |ψ0〉 −Ax(m) |ψ0〉
∥

∥ 6 O
(

‖Ax‖ e
−αm

)
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for the same constant α as in part (b)(i).

Hint: it may help to sketch a diagram of Km acting on Ax |ψ0〉.

(iii) Let Ax and By be observables on qudits x and y, respectively. Prove that, in
the ground state |ψ0〉, the connected correlation function between Ax and By

decays exponentially with distance between qudits x and y

Give an explicit expression for the rate of decay in terms of the spectral gap.
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Consider a system of qubits whose overall Hilbert space is
H = (C2)⊗n ⊗ (C2)⊗T . The subscripts 1 . . . T label the T qubits in the (C2)⊗T part
of the Hilbert space, so that e.g. |x〉〈x|i,j acts non-trivially only on qubits i and j of

(C2)⊗T .

Consider a quantum circuit on n qubits consisting of T quantum gates described by
unitaries Ut, t = 1 . . . T , where each unitary acts non-trivially on at most two qubits.

Define the following Hamiltonians acting on H:

Hinit = |1〉〈1|1 , Hfinal =

T
∑

t=1

Ht

H1 =
1

2
1⊗ (|00〉〈00|1,2 + |10〉〈10|1,2)

−
1

2
U1 ⊗ |10〉〈00|1,2 −

1

2
U

†
1 ⊗ |00〉〈10|1,2

HT =
1

2
1⊗ (|10〉〈10|T−1,T + |11〉〈11|T−1,T )

−
1

2
UT ⊗ |11〉〈10|T−1,T −

1

2
U

†
T ⊗ |10〉〈11|T−1,T

For 1 < t < T :

Ht =
1

2
1⊗

(

|100〉〈100|t−1,t,t+1 + |110〉〈110|t−1,t,t+1

)

−
1

2
Ut ⊗ |110〉〈100|t−1,t,t+1 −

1

2
U

†
t ⊗ |100〉〈110|t−1,t,t+1

Let L be the subspace L = span
{

|ψt〉 |1〉
⊗t |0〉⊗T−t

}

t
⊂ H, where |ψt〉 =

∏t
i=1 Ut |ψ0〉

for some fixed state |ψ0〉.

For any operator X and subspace S, X|S denotes the restriction of X to S.

(a) Show that L is an invariant subspace of both Hinit and Hfinal.

(b) In this part of the question, you may use without proof the fact that the matrix
E = 1

2

∑N
i=0 (|i〉 − |i+ 1〉) (〈i| − 〈i+ 1|) has eigenvalues λk = 1− cos qk where qk =

πk
N+1 , k = 0, . . . , N , and that the eigenvector corresponding to λ0 is 1√

N+1

∑N
i=0 |i〉.

You may also use without proof the Gershgorin Disc Theorem, which states that
for any matrix M , the eigenvalues of M are contained in the union of the discs Di

in the complex plane:

Di =
{

z : |z −Mii| 6
∑

j 6=i

|Mij |
}

,

where Mij denotes the i, jth element of M . Furthermore, a disc which does not
intersect with any other discs contains exactly one eigenvalue.

(i) Find the eigenvalues of Hinit|L.
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(ii) Prove that the spectral gap ∆ (Hfinal|L) of Hfinal|L satisfies
∆(Hfinal|L) > Ω

(

1
T 2

)

.

(iii) Prove that Hfinal|L has a ground state that is a computational history state
for the quantum circuit.

(iv) Let H(s) = (1 − s)Hinit + sHfinal for s ∈ [0, 1]. Prove that the spectral gap
∆ (H(s)|L) >

1
3 for 0 6 s 6 1

3 .

(c) Let |φ(0)〉 and |ϕ〉 be ground states of Hinit|L and Hfinal|L, respectively.

The Adiabatic Theorem says that if the system is prepared in the state |φ(0)〉, and
the Hamiltonian H(s) = (1−s)Hinit+sHfinal is adiabatically varied from s = 0 to 1
at a constant rate, the final state of the system |φ(1)〉 will be ǫ-close in trace distance
to |ϕ〉, i.e.

∥

∥ |φ(1)〉〈φ(1)| − |ϕ〉〈ϕ|
∥

∥

1
6 ǫ,

providing that the total time τ for the adiabatic evolution satisfies

τ > Ω

(

‖Hfinal|L −Hinit|L‖
2

ǫmins∈[0,1]∆(H(s)|L)3

)

.

You may assume without proof that the spectral gap
∆ (H(s)|L) > Ω

(

1
T 2

)

for 1
3 < s 6 1.

Using the results of parts (a) and (b), or otherwise, prove that a state ǫ-close in trace
distance to a computational history state for the quantum circuit can be prepared
adiabatically in a time that scales polynomially in the size of the circuit.
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Throughout this question, you may assume without proof that any classical compu-
tation can be carried out in the quantum circuit model with at most polynomial overhead.

You may also assume without proof that any unitary on a constant number of qudits
can be implemented by a quantum circuit using a constant number of gates.

You may use without proof the following Chernov bound. Let yi, i = 1 . . . n, be
n independent Bernoulli (0/1-valued) random variables with Pr(1) = p∗. (I.e. a biased
coin with Pr(heads) = Pr(1) = p∗ is tossed n times, each outcome is independent, and
yi ∈ {0, 1} is the outcome of the ith coin toss.) Then

Pr

(∑n
i=1 yi

n
− p∗ >

1

2
− p∗

)

< e−(1−2p∗)n if p∗ <
1

2
,

Pr

(

p∗ −

∑n
i=1 yi

n
> p∗ −

1

2

)

< e−(2p∗−1)n if p∗ >
1

2
.

(a) Define the complexity class QMA.

(b) Prove rigorously that defining QMA with success probability
O
(

1− 1
poly(n)

)

, where n is the problem instance size, gives rise to the same complexity

class as QMA defined with success probability 2
3 .

(c) Define the Local Hamiltonian problem.

(d) Prove that the Local Hamiltonian problem is contained in QMA.
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(a) State and prove Kitaev’s Geometrical Lemma, defining all quantities involved.

The function w(t) with Fourier transform ŵ(E) satisfies:

w(t) > 0, ŵ(E) = 0 for E > ∆, ŵ(0) = 1, and

∀T > 0 :

∫ ∞

T
w(t)dt = O

(

(ln βT )2 e−βT/(lnβT )2
)

for some constant β > 0.

For a system of qudits, let H =
∑

Z hZ be a k-local Hamiltonian, where Z in the
summation ranges over k-element subsets of the qudits and hZ acts non-trivially only on
the subset Z.

For the remainder of this question, you may assume that H has a unique ground
state |φ0〉, eigenstates |φi〉, and spectral gap ∆ > 0.

(b) Using the Fourier transform and filtering technique, prove that H can be rewritten
as H =

∑

Z g
(Z) with [g(Z), P0] = 0, where P0 := |φ0〉〈φ0|.

(The operators g(Z) may act on all the qudits in the system.)

(c) Let

g(Z,s) :=

∫ ∞

−∞
w(t)

(

eitHs hZ e
−itHs − eitHs−1 hZ e

−itHs−1

)

dt,

for s > 1, where Hs :=
∑

Y : d(Z,Y )6s

hY and d(Z, Y ) denotes interaction distance, so that

H0 = hZ and HD = H.

Show that g(Z) = hZ +
∑D

s=1 g
(Z,s) for suitably chosen g(Z) from part (b).

(d) A frustration-free Hamiltonian is a Hamiltonian whose overall ground state is also
the ground state of each local term considered separately.

Is the Hamiltonian H =
∑

Z g
(Z) with local terms g(Z) defined as in part (c)

frustration-free? If so, why? If not, why not?

END OF PAPER
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