MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2015 $\,$ 1:30 pm to 4:30 pm

PAPER 66

QUANTUM INFORMATION THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

2

- 1
- i. What is a Stinespring representation of a completely positive map?
- ii. Suppose ρ_{Q} is a state with eigendecomposition $\rho_{\mathsf{Q}} = \sum_{0 \leq i < d} \lambda_i |\alpha_i\rangle \langle \alpha_i|$. Write down the von Neumann entropy $S(\rho_{\mathsf{Q}})$ of ρ_{Q} as a function of the $\{\lambda_i : 0 \leq i < d\}$.
- iii. Define the conditional entropy $H(\mathsf{A}|\mathsf{B})_{\rho}$ and coherent information $I(\mathsf{A}\rangle\mathsf{B})_{\rho}$ in terms of von Neumann entropies.
- iv. Why is it true that for any *pure* state ψ_{QR} of a bipartite system QR , $H(\mathsf{Q})_{\psi} = H(\mathsf{R})_{\psi}$?
- v. The data processing inequality for the coherent information states that if ρ_{AB} is a state and $\mathcal{N}^{B' \leftarrow B}$ is an operation and $\sigma_{AB'} = \mathcal{N}^{B' \leftarrow B} \rho_{AB}$, then

$$I(\mathsf{A}\rangle\mathsf{B})_{\rho} \geqslant I(\mathsf{A}\rangle\mathsf{B}')_{\sigma}.$$

Prove this data processing inequality, stating clearly any results you use.

vi. For any state ρ_{ABC} , show that

$$H(\mathsf{A})_{\rho} + H(\mathsf{B})_{\rho} \leq H(\mathsf{AC})_{\rho} + H(\mathsf{BC})_{\rho}.$$

$\mathbf{2}$

In both parts of this question we are assuming that initially Alice possesses a qubit A and Bob a qubit B which are in the state $\phi_{AB}^+ = |\phi^+\rangle\langle\phi^+|_{AB}$ where $|\phi^+\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$.

- i. Describe in detail how Alice can send two bits of classical information to Bob by transmission of a single qubit, showing why the protocol you describe works.
- ii. Suppose Alice has some real parameter θ in mind, which is unknown to Bob. Describe a protocol involving only local operations and the communication of a single bit (i.e. a message taking a value in $\{0, 1\}$) from Alice to Bob whereby Bob's qubit ends up in the state $|\alpha_{\theta}\rangle\langle\alpha_{\theta}|$ where $|\alpha_{\theta}\rangle := \cos(\theta)|0\rangle + \sin(\theta)|1\rangle$.

UNIVERSITY OF

3

In the following question X is an hermitian operator on a d-dimensional Hilbert space \mathcal{H} with an eigendecomposition $X = \sum_{i=1}^{d} \lambda_i |\alpha_i\rangle \langle \alpha_i |$.

i. Write down the positive part of X, X_+ , the negative part of X, X_- , in terms of the given eigendecomposition.

Define the operator |X| and show that $|X| = X_+ + X_-$.

- ii. Define the trace norm $||X||_1$ and state the Holevo-Helstrom theorem.
- iii. Show that

$$||X||_1 = \max\{\operatorname{Tr} XT : -I \leqslant T \leqslant I\},\$$

where I denotes the identity operator on \mathcal{H} . Use this to prove the Holevo-Helstrom theorem.

- iv. For states ρ and σ , define the trace distance $D(\rho, \sigma)$ and fidelity $F(\rho, \sigma)$.
- v. If $\{|\psi_i\rangle : i = 1, ..., d\}$ is any orthonormal basis for \mathcal{H} , show that

$$\|X\|_1 \ge \sum_{i=1}^d |\langle \psi_i | X | \psi_i \rangle|,$$

stating clearly any results you use. Hence show that for an arbitrary state ρ and pure state $|\psi\rangle\langle\psi|$

$$D(\rho, |\psi\rangle\langle\psi|) \ge 1 - F(\rho, |\psi\rangle\langle\psi|)^2.$$

- $\mathbf{4}$
- i. For a random variable X taking values in a finite set \mathcal{A}_X with distribution P_X : Define the entropy of X, H(X).

What is an ϵ -sufficient subset for X?

ii. Let Z and Z_i for $i \in \{1, 2, ...\}$ be random variables, each taking values in a finite set \mathcal{A}_Z , and independently and identically distributed according to P_Z .

For $n \in \{1, 2, ...\}$, let $Z^{(n)} = (Z_1, Z_2, ..., Z_n)$.

Define the δ -typical subset $T^n_{\delta}(P_Z) \subseteq \mathcal{A}^n_Z$ and, stating clearly any results you use, show that:

- (a) For all $\delta > 0$: $\lim_{n \to \infty} \Pr(Z^{(n)} \in T^n_{\delta}(P_Z)) = 1$.
- (b) $|T_{\delta}^{n}(P_{Z})| \leq 2^{(H(Z)+\delta)n}$.
- (c) For any $\epsilon < 1$, $\delta > 0$ and all sufficiently large n, if S_n is an ϵ -sufficient set for $Z^{(n)}$ then

$$|S_n| \ge \frac{1-\epsilon}{2} 2^{(H(Z)-\delta)n}.$$

iii. A single use of a k-ary erasure channel takes an input symbol X in $\mathcal{A}_X := \{0, 1, \ldots, k-1\}$, and produces an output symbol Y in $\mathcal{A}_Y := \{\mathbf{e}, 0, 1, \ldots, k-1\}$, with the conditional distribution

$$N_{Y|X}(y|x) = \begin{cases} 1-f & \text{if } y = x, \\ f & \text{if } y = \mathbf{e}, \\ 0 & \text{otherwise.} \end{cases}$$

Use Shannon's formula to show that the capacity of the discrete memoryless channel $N_{Y|X}$ is $(1-f) \log k$.

UNIVERSITY OF

 $\mathbf{5}$

i. If X is a random variable taking values in $\{1, \ldots, k\}$ with distribution P_X and $P_X(1) = t$ show that the entropy of X, H(X), satisfies

$$H(X) \leqslant h(t) + (1-t)\log_2(k-1)$$

where $h(t) := (1-t) \log_2 \frac{1}{1-t} + t \log_2 \frac{1}{t}$ is the binary entropy function.

ii. Let ρ be a density operator on a *d*-dimensional Hilbert space \mathcal{H} , let $\{|\psi_i\rangle : i = 1, \ldots, d\}$ be an orthonormal basis for \mathcal{H} , and let

$$\rho' = \sum_{i=1}^{d} |\psi_i\rangle \langle \psi_i | \rho | \psi_i \rangle \langle \psi_i |.$$

Show that $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\rho')$ and use Klein's inequality to show that $S(\rho') \ge S(\rho)$.

iii. Let $|\rho\rangle\langle\rho|_{QR}$ be a purification of a state ρ_Q , where the systems Q and R both have Hilbert spaces of dimension d. Let $\sigma_{QR} := \mathcal{N}^{Q \leftarrow Q} \otimes \mathbf{id}^{R \leftarrow R} |\rho\rangle\langle\rho|_{QR}$ and $f^2 := \langle\rho|_{QR}\sigma_{QR}|\rho\rangle_{QR}$. Using the previous parts of the question, show that

$$S(\sigma_{\mathsf{QR}}) \leq h(f^2) + (1 - f^2) \log_2(d^2 - 1).$$

END OF PAPER