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1 Steady state disk emission
The diffusion equation governing the evolution of a Keplerian accretion disk around

a compact object of mass M∗ is
∂Σ

∂t
=

1

2πr
∂rF ,

where the mass flux F is defined by

F = 6πr1/2∂r

(

r1/2νΣ
)

,

with Σ the disk surface density and ν the mean turbulent viscosity. The viscous torque
vanishes at the radius of the central object r = r∗, and the disk is supplied with mass at
its outer radius r = rout ≫ r∗ at a rate Ṁ .

(a) Calculate the steady state disk structure Σ = Σ(r).

(b) Assume the disk is in steady state energy balance so that cooling balances
heating: C = H. The disk surfaces radiate as blackbodies so that C = 2σT 4, where σ is
the Stefan-Boltzmann constant and T is the effective temperature. The heating rate is
given by H = 9

4
νΣΩ2, where Ω = Ω(r) is the orbital frequency. Show that

T = Tin

(r∗
r

)3/4
(

1−
√

r∗
r

)1/4

,

where Tin = (3GM∗Ṁ/8πσr3
∗
)1/4.

Consider a white dwarf and a neutron star of roughly the same mass and accreting
at the same rate. The white dwarf has radius ∼ 104 km, while the neutron star has a
radius of ∼ 10 km. How much hotter is the disk around the neutron star and how will
this influence its emitted spectrum?

(c) The spectral energy flux of the disk is given by

Fν ∝ ν3
∫ rout

r∗

r

ehν/kT − 1
dr,

where ν is the frequency of the radiation, and h and k are constants.

Show that Fν ∝ ν2 in the low frequency limit ν ≪ kTout/h, where Tout is the
temperature at the outer boundary of the disk. Which region of the disk is primarily
emitting in this range?

Next show that Fν ∝ ν1/3 for intermediate frequencies kTout/h≪ ν ≪ kTin/h. You
may assume for this calculation that T ≈ Tin(r∗/r)

3/4.

(In both parts of the question the constant of proportionality involves a dimensionless
integral you need not evaluate)

(d) The luminosity of an annulus of disk between r = r1 and r = r2 is

L =

∫ r2

r1

2πrH dr.

Show that the total luminosity of the disk is approximately GM∗Ṁ/(2r∗). Next show
that this is only half the potential energy liberated by accretion of material to the radius
r = r∗. What happens to the remaining energy?
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(e) The disk connects to the central star via a boundary layer of thickness ∼ H, the
disk’s local scale height. Assuming the boundary layer emits as a blackbody, show that
the effective temperature of the boundary layer is

TBL ∼
(r∗
H

)1/4
Tin .

What can you say about the boundary layer’s emission in comparison to the disk’s?
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2 Compressible dynamics and gravitational instability
The equations governing compressible gas in the shearing sheet are

∂tu+ u · ∇u = − 1

Σ
∇P − 2Ω ez × u−∇Φt,

∂tΣ+ u · ∇Σ = −Σ∇ · u,

where u is velocity, Σ is surface density, the tidal potential is Φt = −3

2
Ω2x2, and Ω is

the orbital frequency of the sheet. The gas is assumed to be isothermal so the pressure is
P = c2sΣ, where cs is the (constant) isothermal sound speed.

(a) Obtain the following evolution equation for the total energy,

∂t
(

1

2
Σu2 + c2sΣ lnΣ + ΣΦt

)

+∇ · F = 0,

where F is the energy flux, the form of which you should give.

(You may need the vector identity: A×∇×A = 1

2
∇(A ·A)−A · ∇A.)

(b) A disk is gravitationally unstable if Q < 1, where

Q =
cs κ

πGΣ0

,

and κ is the epicyclic frequency. Describe the different physical processes competing for
the stability of the disk and how they are represented in the Q parameter. Give an
approximate form of the stability criterion in terms of the scale height (H) and the masses
of the disk (MD) and the central star (M∗).

A popular model for the protosolar nebula sets

Σ0 ∼ 103
( r

1AU

)

−3/2
g cm−2,

where 1 AU ∼ 1013 cm. If the disk aspect ratio is a constant and equal to 0.1, estimate
the value of Q, and hence determine the disk’s stability, at 1 AU. At what radius would
the protosolar nebula be unstable? Discuss the likelihood that planets in the solar system
formed via gravitational instability in the disk.

(Assume that G ∼ 7× 10−8 cm3 g−1 s−2.)

(c) The gravitational potential of a disk is obtained from Poisson’s equation

∇2Φ = 4πGρ,

where ρ is the disk’s volumetric mass density.

A razor-thin two-dimensional disk is modelled with ρ = Σ δ(z), where δ(z) is the
Dirac delta function. Consider a small density perturbation Σ′ = Σ0e

ikx upon an otherwise
homogeneous disk, where Σ0 is a constant. Compute Φ′, the corresponding perturbation
in the gravitational potential.

(d) Next consider a fully three-dimensional disk of density ρ. Show, using index
notation or otherwise, that the self-gravitational force in the momentum equation −ρ∇Φ
may be written as the divergence of a stress −∇ ·T, where

Tij = ρ
(

gi gj − 1

2
δij g

2
)

,
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and δij is the Kronecker delta, and the ‘gravitational velocity’ is defined by g =
∇Φ/

√
4πGρ.

Which term in the above do you think contributes to angular momentum transport
and why? What is the effect of the other term?
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3 The magnetorotational instability in a radially stratified disk
Consider an accretion disk with a radially varying thermal structure. A local patch

of the disk may be represented in the shearing sheet by the following set of equations

∂tu+ u · ∇u = − 1

ρ0
∇ψ − 2Ω ez × u+ 3Ω2x ex −N2 θ ex +

1

4πρ0
B · ∇B,

∂tB+ u · ∇B = B · ∇u, ∂tθ + u · ∇θ = ux,

∇ · u = 0, ∇ ·B = 0,

where u, B, ψ, and ρ0 are the velocity, magnetic field, total pressure, and density,
respectively. In addition, θ is the ‘potential temperature’ perturbation. Finally, Ω is the
orbital frequency of the shearing sheet and N2 is the squared radial buoyancy frequency
of the gas. Both ρ0 and N2 are constants.

(a) The disk supports the equilibrium state: u = −3

2
Ωx ey, B = B0 ez, with ψ a

constant and θ = 0. Consider general perturbations to this state and write down the 9
linearised equations governing their evolution.

(b) Suppose the perturbations are independent of x and y and proportional to
eσt+ikz. First show that the pressure and vertical components of the velocity and magnetic
field perturbations are zero. Subsequently derive the dispersion relation

σ4 +
(

2v2Ak
2 +N2 +Ω2

)

σ2 + v2Ak
2
(

v2Ak
2 +N2 − 3Ω2

)

= 0,

where v2A = B2
0/(4πρ0).

(c) Consider the case when B0 = 0, and establish the Hoiland-Solberg instability
criterion, N2 +Ω2 < 0.

The buoyancy frequency is given by N2 ∝ −ρ−1∂rP ∂rS, evaluated at the radius
of the shearing sheet. Here P and S are the equilibrium gas pressure and dimensionless
entropy of the global disk. Both quantities are assumed to decrease with radius. Give an
order of magnitude estimate for N2 and comment on the hydrodynamical stability of the
disk.

(d) Consider now B0 6= 0. Establish the instability criterion in this case, then show
that the maximum growth rate occurs when

v2Ak
2 = Ω2 − (N2 +Ω2)2

16Ω2
.

What condition must hold for the above expression to make sense? Finally, find the
maximum growth rate and comment on the influence of the thermal radial structure on
the magnetorotational instability.
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