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The collisionless Boltzmann equation has the form

vi
∂F

∂xi
−
∂Φ

∂xi

∂F

∂vi
= 0,

where F is the distribution function and Φ is the gravitational potential. Using this, derive
the Jeans equations in the form

∂

∂xi
ρ〈vivj〉 = −ρ

∂Φ

∂xj
,

where ρ is the stellar density and angled brackets denote averages over the distribution
function.

Hence, derive the tensor virial theorem

2Kij +Wij = 0,

where the kinetic energy Kij and potential energy Wij tensors are

Kij =
1

2

∫

ρ〈vivj〉dV,

Wij = −

∫

ρxi
∂Φ

∂xj
dV.

By denoting the traces as K = Kii and W = Wii, show that the total energy E of
the system satifies

E = −K =
W

2
.

Now consider a system with initial total mass MI, total energy EI, mean square
velocity of stars 〈v2I 〉 and gravitational radius RI. Show that

EI = −
1

2
MI〈v

2
I 〉 = −

GM2
I

2RI
.

Suppose that systems are accreted with energies totally EA, masses totalling MA,
and mean square speeds averaging 〈v2A〉. If we define the fractions η = MA/MI and
ǫ = 〈v2A〉/〈v

2
I 〉, show that the final energy of the system is

EF = −
1

2
MI〈v

2
I 〉(1 + ǫη),

explaining carefully any assumptions made.

Show that the ratio of final to initial mean square speeds is

〈v2F〉

〈v2I 〉
=

1 + ηǫ

1 + η
.

Show further that the ratio of final to initial gravitational radii is

RF

RI
=

(1 + η)2

1 + ηǫ
.
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If the total mass of the system increases by a factor of 2, show that one equal mass
merger causes the radius to increase by a factor of 2, but many minor mergers cause it to
increase by a factor of 4.
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Explain what is meant by the phase space distribution function of a galaxy.

A galaxy model has potential

Φ(r) = v20 log

[

a+ r

a

]

,

where v0 and a are constants. Show that the density of the model is

ρ(r) =
v20
4πG

2a+ r

r(a+ r)2
.

Derive and sketch the rotation curve of the model. Is it realistic?

Demonstrate that stars moving in the galaxy’s potential conserve their energy per
unit mass E and their angular momentum per unit mass L.

Prove Jeans Theorem, namely that the phase space distribution function of a steady-
state galaxy depends only on the integrals of motion.

Show that a possible phase space distribution function for the galaxy model is

F (E,L) =
1

8π3GaL

[

exp(−E/v20) + 2 exp(−2E/v20)
]

,

where L = |L|.

Show that the second velocity moments or velocity dispersions are

〈v2r 〉 =
v20
2

3a+ 2r

2a+ r
,

〈v2θ〉 = 〈v2φ〉 =
v20
4

3a+ 2r

2a+ r
.

Show also that the mixed moments all vanish, that is

〈vrvθ〉 = 〈vrvφ〉 = 〈vθvφ〉 = 0.

Interpret your results in terms of the orbital structure of the model.

Hint: You are reminded of the standard integral (α > 0)

∫

∞

−∞

exp(−αv2)dv =

√

π

α
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A star moves on a circular orbit in a galaxy with the axisymmetric potential Φ(R, z).
If Lz is the star’s angular momentum component parallel to the symmetry axis, show that
the radius Rc of the circular orbit in the equatorial plane is given by

∂Φ

∂R

∣

∣

∣

(Rc,0)
=

L2
z

Rc
3

Now suppose the star’s motion is perturbed about the circular orbit. Letting
x = R − Rc and letting z denote denote displacement perpendicular to the equatorial
plane, derive the equations of the epicyclic approximation

ẍ = −κ2x, z̈ = −ν2z,

where a superscript dot means a derivative with respect to time, whilst κ and ν are the
epicyclic and vertical frequencies respectively. Explain carefully any assumptions made.

If the circular frequency is Ω, show that

κ2 = R
dΩ2

dR
+ 4Ω2.

Explain why Ω . κ . 2Ω for applications in galactic dynamics.

By erecting Cartesian coordinates (x, y) at the guiding center, show that

x = X cos(κt+ χ), y = −Y sin(κt+ χ),

where χ is a constant phase, and the amplitudes X and Y satisfy

X

Y
=

κ

2Ω
.

Interpret your result geometrically.

The Oort’s constants in the solar neighbourhood are defined by

A = −
1

2
R
dΩ

dR
= 14.5 kms−1kpc−1,

B = −

(

1

2
R
dΩ

dR
+Ω

)

= −12 kms−1kpc−1.

Use these to estimate X/Y for the Sun’s orbit.

Let ∆ψ denote the increment in azimuthal angle for one complete radial oscillation.
Show that, in the epicyclic approximation,

∆ψ = 2π

(

4 +
d log Ω2

d logR

)−1/2

.

Estimate ∆ψ for the Sun’s orbit.
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A spherical galaxy has density ρ(r), where r is spherical polar radius. Show that
the gravitational potential is

Φ(r) = −4πG

[

1

r

∫ r

0
ρ(r′)r′

2
dr′ +

∫

∞

r
ρ(r′)r′dr′

]

.

Show that the circular speed is

v2c =
GM(r)

r
,

where M(r) is the mass enclosed within r.

Now consider an infinitesimally thin axisymmetric disk with surface density Σ(R),
where R is cylindrical polar radius. Show that the gravitational potential in the disk is

Φ(R) = −G

∫

∞

0
Σ(R′)R′dR′

∫ 2π

0

dφ′

|x− x′|
,

where x′ = (R′, φ′) and x = (R,φ) in polar coordinates.

By expanding in Legendre polynomials, show that the circular speed in the disk is

v2c =
GM(R)

R
+ 2G

∞
∑

k=1

α2k

[

(2k + 1)R−(2k+1)

∫ R

0
Σ(R′)R′2k+1

dR′

− 2kR2k

∫

∞

R
Σ(R′)R′−2k

dR′

]

,

where

αn = π

(

(n)!

2n((n/2)!)2

)2

, (1)

and M(R) is the mass enclosed within radius R.

In many galaxies, the disk surface density Σ falls off exponentially with R. Explain
why the rotation curve of such an exponential disk approaches the Keplerian limit from
above.

Find an example of an infinitesimally thin disk for which

v2c =
GM(R)

R
,

and plot its rotation curve.

Hint: You may find useful the following expansion

1

|x− x′|
=

∞
∑

k=0

Rk
<

Rk+1
>

Pk(cos γ),

where R< = min(|x|, |x′|) and R> = max(|x|, |x′|) and γ is the angle between x and x′.

You may also assume without proof the following integrals of Legendre polynomials
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∫ π

−π
Pn(cosφ)dφ =

{

0, if n odd,

2αn, if n even,

where αn is given in eq. (1).

END OF PAPER
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