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1

Let (Ω,F , µ) be a measure space. Define the (real) normed spaces Lp(Ω,F , µ) for
1 6 p 6 ∞, and show that they are complete.

State a theorem identifying the dual space of Lp(Ω,F , µ) in the case 1 6 p < ∞.
Prove this theorem in the case when 1 < p < ∞ and when (Ω,F , µ) is a finite measure
space. [Results from measure theory can be used without proof.]

Prove carefully that for 1 < p < ∞ the Banach space Lp(Ω,F , µ) is reflexive. [Hint:
It is not enough to show that Lp(Ω,F , µ) is isometrically isomorphic to its second dual.]

2

Define the weak topology of a normed space. State and prove Mazur’s theorem.
[Any version of the Hahn–Banach theorem may be used without proof.]

Define the weak-star topology of a dual space. State and prove the Banach–Alaoglu
theorem. [Results from general topology may be used without proof.]

What is the subspace topology on X induced by the weak-star topology on X∗∗?
[Here we identify X with its image in X∗∗ under the canonical embedding.]

Let C be a bounded, convex subset of a Banach space X. Show that C, the norm-

closure of C in X, is weakly compact if and only if C
w∗

, the weak-star-closure of C in
X∗∗, is contained in X.

Let T : X → Y be a bounded linear map between Banach spaces. Show that
T ∗ : Y ∗ → X∗ is continuous with respect to the weak-star topologies of Y ∗ and X∗. Show
that T (BX) is weakly compact if and only if T ∗∗(X∗∗) ⊂ Y . [Hint for the ‘only if ’ part:

Goldstine’s theorem.]

3

[In this question all vector spaces are over the field of complex numbers.]

What is an extreme point of a convex set in a vector space?

State and prove the Krein–Milman theorem for compact, convex sets in locally
convex spaces. [Any version of the Hahn–Banach theorem may be used without proof.]

Describe without proof the set of extreme points of the closed unit ball of C(K)∗

for a compact Hausdorff space K. State and prove the Banach–Stone theorem.

Is there a Banach space whose dual space is isometrically isomorphic to c0 or to
L1[0, 1]? Are the spaces C[0, 1] and C([0, 1]∪ [2, 3]) isometrically isomorphic? Justify your
answers.
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4

Develop the theory of commutative, unital Banach algebras up to and including
the Gelfand Representation Theorem. Calculate the Gelfand map for the algebra of
continuous functions on a compact Hausdorff space. [Basic properties of Banach algebras
and elementary spectral theory, including the Gelfand–Mazur theorem on normed division
algebras, can be assumed without proof.]

What can you say about the Gelfand map for a commutative, unital C∗-algebra?

5

Let X be a real or complex vector space and p be a semi-norm on X. Let Y be a
subspace of X and g be a linear functional on Y such that |g(y)| 6 p(y) for all y ∈ Y .
Prove that there exists a linear functional f on X such that f |Y = g and |f(x)| 6 p(x) for
all x ∈ X. [No version of the Hahn–Banach theorem can be used without proof.]

Let Y be a subspace of a normed space X. Let z ∈ X \ Y with d = d(z, Y ) =
inf{‖z − y‖ : y ∈ Y } > 0. Show that there exists f ∈ X∗ such that Y ⊂ kerf , ‖f‖ = 1
and f(z) = d.

Prove the existence of L ∈ ℓ∗
∞

with the following properties. [Here ℓ∞ is the real

space of bounded sequences, and c denotes the subspace of convergent sequences.]

(a) ‖L‖ = 1.

(b) If x = (xn) ∈ c, then L(x) = limn→∞ xn.

(c) If x = (xn) ∈ ℓ∞ and x′ = (x2, x3, x4, . . . ), then L(x) = L(x′).

[Hint: Consider Y = {x− x′ : x ∈ ℓ∞} and z = (1, 1, 1, . . . ).]
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