MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2015 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 6

FUNCTIONAL ANALYSIS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define the (real) normed spaces $L_p(\Omega, \mathcal{F}, \mu)$ for $1 \leq p \leq \infty$, and show that they are complete.

State a theorem identifying the dual space of $L_p(\Omega, \mathcal{F}, \mu)$ in the case $1 \leq p < \infty$. Prove this theorem in the case when $1 and when <math>(\Omega, \mathcal{F}, \mu)$ is a finite measure space. [Results from measure theory can be used without proof.]

Prove carefully that for $1 the Banach space <math>L_p(\Omega, \mathcal{F}, \mu)$ is reflexive. [Hint: It is not enough to show that $L_p(\Omega, \mathcal{F}, \mu)$ is isometrically isomorphic to its second dual.]

$\mathbf{2}$

Define the weak topology of a normed space. State and prove Mazur's theorem. [Any version of the Hahn–Banach theorem may be used without proof.]

Define the weak-star topology of a dual space. State and prove the Banach–Alaoglu theorem. [Results from general topology may be used without proof.]

What is the subspace topology on X induced by the weak-star topology on X^{**} ? [Here we identify X with its image in X^{**} under the canonical embedding.]

Let C be a bounded, convex subset of a Banach space X. Show that \overline{C} , the normclosure of C in X, is weakly compact if and only if \overline{C}^{w^*} , the weak-star-closure of C in X^{**} , is contained in X.

Let $T: X \to Y$ be a bounded linear map between Banach spaces. Show that $T^*: Y^* \to X^*$ is continuous with respect to the weak-star topologies of Y^* and X^* . Show that $\overline{T(B_X)}$ is weakly compact if and only if $T^{**}(X^{**}) \subset Y$. [Hint for the 'only if' part: Goldstine's theorem.]

3

[In this question all vector spaces are over the field of complex numbers.]

What is an *extreme point* of a convex set in a vector space?

State and prove the Krein–Milman theorem for compact, convex sets in locally convex spaces. [Any version of the Hahn–Banach theorem may be used without proof.]

Describe without proof the set of extreme points of the closed unit ball of $C(K)^*$ for a compact Hausdorff space K. State and prove the Banach–Stone theorem.

Is there a Banach space whose dual space is isometrically isomorphic to c_0 or to $L_1[0,1]$? Are the spaces C[0,1] and $C([0,1] \cup [2,3])$ isometrically isomorphic? Justify your answers.

CAMBRIDGE

 $\mathbf{4}$

Develop the theory of commutative, unital Banach algebras up to and including the Gelfand Representation Theorem. Calculate the Gelfand map for the algebra of continuous functions on a compact Hausdorff space. [Basic properties of Banach algebras and elementary spectral theory, including the Gelfand–Mazur theorem on normed division algebras, can be assumed without proof.]

What can you say about the Gelfand map for a commutative, unital C*-algebra?

$\mathbf{5}$

Let X be a real or complex vector space and p be a semi-norm on X. Let Y be a subspace of X and g be a linear functional on Y such that $|g(y)| \leq p(y)$ for all $y \in Y$. Prove that there exists a linear functional f on X such that $f|_Y = g$ and $|f(x)| \leq p(x)$ for all $x \in X$. [No version of the Hahn–Banach theorem can be used without proof.]

Let Y be a subspace of a normed space X. Let $z \in X \setminus Y$ with $d = d(z, Y) = \inf\{||z - y|| : y \in Y\} > 0$. Show that there exists $f \in X^*$ such that $Y \subset \ker f$, ||f|| = 1 and f(z) = d.

Prove the existence of $L \in \ell_{\infty}^*$ with the following properties. [Here ℓ_{∞} is the *real* space of bounded sequences, and c denotes the subspace of convergent sequences.]

- (a) ||L|| = 1.
- (b) If $x = (x_n) \in c$, then $L(x) = \lim_{n \to \infty} x_n$.
- (c) If $x = (x_n) \in \ell_{\infty}$ and $x' = (x_2, x_3, x_4, ...)$, then L(x) = L(x').

[*Hint: Consider* $Y = \{x - x' : x \in \ell_{\infty}\}$ and z = (1, 1, 1, ...).]

END OF PAPER