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You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u ,

∂p

∂t
+ u · ∇p = −γp∇ · u ,

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0
(∇×B)×B ,

∂B

∂t
= ∇× (u×B) ,

∇ ·B = 0 ,

∇2Φ = 4πGρ .

1

(a) Formulate the equations governing the steady, spherically symmetric, adiabatic flow
of an unmagnetized, non-self-gravitating perfect gas in a gravitational potential Φ
that depends only on the spherical radius r.

(b) If Φ = −Ar−β, where A and β are positive constants, show that a necessary
condition for either (i) an inflow that starts from rest at r = ∞ or (ii) an outflow
that reaches r = ∞ to pass through a sonic point is

γ < f(β) ,

where γ > 1 is the adiabatic exponent and f(β) is a function to be determined.

(c) Assuming that this condition is satisfied, calculate the accretion rate of a transonic
accretion flow in terms of A, β, γ and the density and sound speed at r = ∞.
Evaluate your expression in each of the limits γ → 1 and γ → f(β).

[You may find it helpful to define δ = γ − 1. You may assume that

lim
ǫ→0

(1− ǫx)−1/ǫ = ex and lim
ǫ→0

(ǫx)−ǫ = 1 for x 6= 0 .]
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2

In this question all fields may be assumed to be independent of y in Cartesian
coordinates (x, y, z).

(a) A twisted magnetic flux tube in a plane-parallel atmosphere has a magnetic field
that is independent of y. Explain why this can be written as

B = ∇× (ψ ey) +By ey

in terms of a magnetic flux function ψ. Show that the Lorentz force per unit volume
is

−
1

µ0

(

∇2ψ∇ψ +By∇By +∇ψ ×∇By

)

.

(b) If the tube is in magnetostatic equilibrium, show that By = By(ψ) and

1

µ0

(

∇2ψ +By
dBy

dψ

)

∇ψ +∇p+ ρ∇Φ = 0 .

(c) Now suppose instead that the tube rises through the atmosphere and is accompanied
by a velocity field u. Show that ψ and By evolve according to

Dψ

Dt
= 0 ,

DBy

Dt
= B · ∇uy −By∇ · u .

Deduce that, if the initial conditions at t = 0 are such that uy = 0 and By = f(ψ)
is a function of ψ only, then, provided that ∇ · u = g(ψ, t) is a function of ψ and t
only, no force or motion in the y direction will result during the rising of the tube.
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3

In Cartesian coordinates (x, y, z), a non-self-gravitating ideal MHD flow in the
presence of a uniform horizontal shear flow has the form

u = v(z, t) + ax ey , B = B(z, t) , ρ = ρ(z, t) ,

where a is a constant describing the background shear. The flow is isothermal, with p = c2sρ
and cs = constant, and the gravitational field is of the form g = −∇Φ = −g(z)ez.

(a) Show that Bz is constant, and derive the equations

(

∂

∂t
+ vz

∂

∂z

)

ρ = −ρ
∂vz
∂z

,

(

∂

∂t
+ vz

∂

∂z

)

vx =
Bz

µ0ρ

∂Bx

∂z
,

(

∂

∂t
+ vz

∂

∂z

)

vy + avx =
Bz

µ0ρ

∂By

∂z
,

(

∂

∂t
+ vz

∂

∂z

)

vz = −g −
1

ρ

∂

∂z

(

p+
B2

2µ0

)

,

(

∂

∂t
+ vz

∂

∂z

)

Bx = Bz
∂vx
∂z

−Bx
∂vz
∂z

,

(

∂

∂t
+ vz

∂

∂z

)

By = Bz
∂vy
∂z

+ aBx −By
∂vz
∂z

.

(b) Deduce the associated total energy equation in the form

∂E

∂t
+
∂F

∂z
= S ,

where

E = ρ

[

1

2
v2 +Φ+ c2s ln

(

ρ

ρ0

)]

+
B2

2µ0

is the energy per unit length in the z direction (not including the energy of the
background shear flow), ρ0 is an arbitrary reference density, F is an energy flux in
the z direction and S is a source term proportional to a. Give explicit expressions
for F and S.

(c) In the case of a steady flow, take linear combinations of the equations to show that

[

v4z −
(

c2s + v2a
)

v2z + c2sv
2

az

] 1

vz

dvz
dz

= g
(

v2az − v2z
)

+ avay (vxvaz − vzvax) ,

where va is the Alfvén velocity. Discuss the physical significance of the form of this
equation if vz represents the velocity of an outflow that accelerates from very low
to very high velocities as z increases.
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A hypothetical model of a star consists of a perfect gas sphere of mass M , radius R
and uniform density ρ, in hydrostatic equilibrium under its own gravity, with no magnetic
field, and surrounded by empty space. The adiabatic exponent of the gas is γ. For r 6 R,
the inward gravitational acceleration is g = ω2

d
r and the pressure is p = 1

2
ρω2

d
(R2 − r2),

where ωd = (GM/R3)1/2 = (4πGρ/3)1/2 is the dynamical frequency of the star.

(a) Formulate, by any method, the linearized equations for small perturbations to the
equilibrium state.

(b) Assume that the displacement and associated Eulerian perturbations have the form

ξ = U(r)F r + V (r)∇F ,

δρ = ρ̂(r)F ,

δp = p̂(r)F ,

δΦ = Φ̂(r)F ,

where (r, θ, φ) are spherical polar coordinates, r = r er is the position vector and

F = rlY m
l (θ, φ) e−iωt ,

where l > 0 is an integer and Y m
l is a spherical harmonic function such that

∇2F = 0. Show that the various functions of r satisfy the ordinary differential
equations

ρω2Ur = ρ̂ω2

dr + ρ
dΦ̂

dr
+

dp̂

dr
,

ρω2V = ρΦ̂ + p̂ ,

ρ̂ = −ρ∆ ,

p̂ = ρω2

d(Ur
2 + lV )− γp∆ ,

d2Φ̂

dr2
+

2(l + 1)

r

dΦ̂

dr
= 4πGρ̂ ,

in r < R, where

∆ = r
dU

dr
+ (l + 3)U +

l

r

dV

dr
.

(c) Assume further that there exist solutions of these equations in which V , p̂ and Φ̂
are even polynomials of degree n in r, while U , ρ̂ and ∆ are even polynomials of
degree n− 2 in r, where n > 2 is an even integer. By examining the highest power
of r in each of the above equations, deduce that

ω4 +
[

4− 1

2
γn(2l + n+ 1)

]

ω2

dω
2 − l(l + 1)ω4

d = 0 .

Use this relation to analyse the stability of the model to perturbations of this type,
and comment on the results.

[Hint: In manipulating the algebraic equations it may be found easiest to eliminate

first the coefficients of the highest powers of r in U and V .]
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[You need not consider the boundary conditions. The square of the (Brunt–Väisälä)
buoyancy frequency is

N2 = g

(

1

γ

d ln p

dr
−

d ln ρ

dr

)

.]

END OF PAPER
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