MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2015 $\,$ 9:00 am to 12:00 pm

PAPER 57

ASTROPHYSICAL FLUID DYNAMICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

You are reminded of the equations of ideal magnetohydrodynamics in the form

$$\begin{split} & \frac{\partial \rho}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \rho = -\rho \boldsymbol{\nabla} \cdot \boldsymbol{u} \,, \\ & \frac{\partial p}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} p = -\gamma p \boldsymbol{\nabla} \cdot \boldsymbol{u} \,, \\ & \rho \left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} \right) = -\rho \boldsymbol{\nabla} \Phi - \boldsymbol{\nabla} p + \frac{1}{\mu_0} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} \,, \\ & \frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) \,, \\ & \boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \,, \\ & \boldsymbol{\nabla}^2 \Phi = 4\pi G \rho \,. \end{split}$$

(a) Formulate the equations governing the steady, spherically symmetric, adiabatic flow of an unmagnetized, non-self-gravitating perfect gas in a gravitational potential Φ that depends only on the spherical radius r.

(b) If $\Phi = -Ar^{-\beta}$, where A and β are positive constants, show that a necessary condition for either (i) an inflow that starts from rest at $r = \infty$ or (ii) an outflow that reaches $r = \infty$ to pass through a sonic point is

$$\gamma < f(\beta) \,,$$

where $\gamma > 1$ is the adiabatic exponent and $f(\beta)$ is a function to be determined.

(c) Assuming that this condition is satisfied, calculate the accretion rate of a transonic accretion flow in terms of A, β , γ and the density and sound speed at $r = \infty$. Evaluate your expression in each of the limits $\gamma \to 1$ and $\gamma \to f(\beta)$.

[You may find it helpful to define $\delta = \gamma - 1$. You may assume that

$$\lim_{\epsilon \to 0} (1 - \epsilon x)^{-1/\epsilon} = e^x \quad \text{and} \quad \lim_{\epsilon \to 0} (\epsilon x)^{-\epsilon} = 1 \quad \text{for } x \neq 0.$$

UNIVERSITY OF

 $\mathbf{2}$

In this question all fields may be assumed to be independent of y in Cartesian coordinates (x, y, z).

3

(a) A twisted magnetic flux tube in a plane-parallel atmosphere has a magnetic field that is independent of y. Explain why this can be written as

$$\boldsymbol{B} = \boldsymbol{\nabla} \times (\psi \, \boldsymbol{e}_y) + B_y \, \boldsymbol{e}_y$$

in terms of a magnetic flux function ψ . Show that the Lorentz force per unit volume is

$$-\frac{1}{\mu_0}\left(\nabla^2\psi\,\boldsymbol{\nabla}\psi+B_y\boldsymbol{\nabla}B_y+\boldsymbol{\nabla}\psi\times\boldsymbol{\nabla}B_y\right).$$

(b) If the tube is in magnetostatic equilibrium, show that $B_y = B_y(\psi)$ and

$$\frac{1}{\mu_0} \left(\nabla^2 \psi + B_y \frac{\mathrm{d}B_y}{\mathrm{d}\psi} \right) \nabla \psi + \nabla p + \rho \nabla \Phi = \mathbf{0} \,.$$

(c) Now suppose instead that the tube rises through the atmosphere and is accompanied by a velocity field \boldsymbol{u} . Show that ψ and B_y evolve according to

$$\frac{\mathrm{D}\psi}{\mathrm{D}t} = 0, \qquad \frac{\mathrm{D}B_y}{\mathrm{D}t} = \boldsymbol{B} \cdot \boldsymbol{\nabla} u_y - B_y \boldsymbol{\nabla} \cdot \boldsymbol{u}.$$

Deduce that, if the initial conditions at t = 0 are such that $u_y = 0$ and $B_y = f(\psi)$ is a function of ψ only, then, provided that $\nabla \cdot \boldsymbol{u} = g(\psi, t)$ is a function of ψ and t only, no force or motion in the y direction will result during the rising of the tube.

UNIVERSITY OF

3

In Cartesian coordinates (x, y, z), a non-self-gravitating ideal MHD flow in the presence of a uniform horizontal shear flow has the form

4

$$\boldsymbol{u} = \boldsymbol{v}(z,t) + ax \, \boldsymbol{e}_y, \qquad \boldsymbol{B} = \boldsymbol{B}(z,t), \qquad \rho = \rho(z,t),$$

where *a* is a constant describing the background shear. The flow is isothermal, with $p = c_s^2 \rho$ and $c_s = \text{constant}$, and the gravitational field is of the form $\boldsymbol{g} = -\boldsymbol{\nabla}\Phi = -g(z)\boldsymbol{e}_z$.

(a) Show that B_z is constant, and derive the equations

$$\begin{split} \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) \rho &= -\rho \frac{\partial v_z}{\partial z} \,, \\ \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) v_x &= \frac{B_z}{\mu_0 \rho} \frac{\partial B_x}{\partial z} \,, \\ \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) v_y + av_x &= \frac{B_z}{\mu_0 \rho} \frac{\partial B_y}{\partial z} \,, \\ \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) v_z &= -g - \frac{1}{\rho} \frac{\partial}{\partial z} \left(p + \frac{B^2}{2\mu_0}\right) \,, \\ \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) B_x &= B_z \frac{\partial v_x}{\partial z} - B_x \frac{\partial v_z}{\partial z} \,, \\ \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) B_y &= B_z \frac{\partial v_y}{\partial z} + aB_x - B_y \frac{\partial v_z}{\partial z} \end{split}$$

(b) Deduce the associated total energy equation in the form

$$\frac{\partial E}{\partial t} + \frac{\partial F}{\partial z} = S \,,$$

where

$$E = \rho \left[\frac{1}{2}v^2 + \Phi + c_{\rm s}^2 \ln \left(\frac{\rho}{\rho_0} \right) \right] + \frac{B^2}{2\mu_0}$$

is the energy per unit length in the z direction (not including the energy of the background shear flow), ρ_0 is an arbitrary reference density, F is an energy flux in the z direction and S is a source term proportional to a. Give explicit expressions for F and S.

(c) In the case of a steady flow, take linear combinations of the equations to show that

$$\left[v_{z}^{4} - \left(c_{s}^{2} + v_{a}^{2}\right)v_{z}^{2} + c_{s}^{2}v_{az}^{2}\right]\frac{1}{v_{z}}\frac{\mathrm{d}v_{z}}{\mathrm{d}z} = g\left(v_{az}^{2} - v_{z}^{2}\right) + av_{ay}\left(v_{x}v_{az} - v_{z}v_{ax}\right),$$

where v_a is the Alfvén velocity. Discuss the physical significance of the form of this equation if v_z represents the velocity of an outflow that accelerates from very low to very high velocities as z increases.

CAMBRIDGE

 $\mathbf{4}$

A hypothetical model of a star consists of a perfect gas sphere of mass M, radius R and uniform density ρ , in hydrostatic equilibrium under its own gravity, with no magnetic field, and surrounded by empty space. The adiabatic exponent of the gas is γ . For $r \leq R$, the inward gravitational acceleration is $g = \omega_{\rm d}^2 r$ and the pressure is $p = \frac{1}{2}\rho\omega_{\rm d}^2(R^2 - r^2)$, where $\omega_{\rm d} = (GM/R^3)^{1/2} = (4\pi G\rho/3)^{1/2}$ is the dynamical frequency of the star.

- (a) Formulate, by any method, the linearized equations for small perturbations to the equilibrium state.
- (b) Assume that the displacement and associated Eulerian perturbations have the form

$$\begin{aligned} \boldsymbol{\xi} &= U(r)F\,\boldsymbol{r} + V(r)\boldsymbol{\nabla}F\\ \delta\rho &= \hat{\rho}(r)F\,,\\ \delta p &= \hat{p}(r)F\,,\\ \delta\Phi &= \hat{\Phi}(r)F\,, \end{aligned}$$

where (r, θ, ϕ) are spherical polar coordinates, $\mathbf{r} = r \, \mathbf{e}_r$ is the position vector and

$$F = r^l Y_l^m(\theta, \phi) \,\mathrm{e}^{-\mathrm{i}\omega t}$$

where $l \ge 0$ is an integer and Y_l^m is a spherical harmonic function such that $\nabla^2 F = 0$. Show that the various functions of r satisfy the ordinary differential equations

$$\begin{split} \rho \omega^2 Ur &= \hat{\rho} \omega_{\rm d}^2 r + \rho \frac{{\rm d} \Phi}{{\rm d} r} + \frac{{\rm d} \hat{p}}{{\rm d} r} \,, \\ \rho \omega^2 V &= \rho \hat{\Phi} + \hat{p} \,, \\ \hat{\rho} &= -\rho \Delta \,, \\ \hat{p} &= \rho \omega_{\rm d}^2 (Ur^2 + lV) - \gamma p \Delta \,, \\ \frac{{\rm d}^2 \hat{\Phi}}{{\rm d} r^2} + \frac{2(l+1)}{r} \frac{{\rm d} \hat{\Phi}}{{\rm d} r} = 4\pi G \hat{\rho} \,, \end{split}$$

in r < R, where

$$\Delta = r \frac{\mathrm{d}U}{\mathrm{d}r} + (l+3)U + \frac{l}{r} \frac{\mathrm{d}V}{\mathrm{d}r} \,.$$

(c) Assume further that there exist solutions of these equations in which V, \hat{p} and $\hat{\Phi}$ are even polynomials of degree n in r, while U, $\hat{\rho}$ and Δ are even polynomials of degree n-2 in r, where $n \ge 2$ is an even integer. By examining the highest power of r in each of the above equations, deduce that

$$\omega^4 + \left[4 - \frac{1}{2}\gamma n(2l+n+1)\right]\omega_d^2\omega^2 - l(l+1)\omega_d^4 = 0.$$

Use this relation to analyse the stability of the model to perturbations of this type, and comment on the results.

[*Hint:* In manipulating the algebraic equations it may be found easiest to eliminate first the coefficients of the highest powers of r in U and V.]

Part III, Paper 57

[TURN OVER

CAMBRIDGE

[You need not consider the boundary conditions. The square of the (Brunt–Väisälä) buoyancy frequency is

$$N^{2} = g\left(\frac{1}{\gamma}\frac{\mathrm{d}\ln p}{\mathrm{d}r} - \frac{\mathrm{d}\ln\rho}{\mathrm{d}r}\right) \,.]$$

END OF PAPER