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1

Show, by constructing an atlas of charts, that the n–dimensional ellipsoid

En = {r ∈ R
n+1,

n+1∑

i=1

ai
2ri

2 = 1}, ai 6= 0

is a smooth manifold.

Consider the left–translations on the Lie group SU(2) to show that S3 admits three
independent non–vanishing global vector fields.

2

Define a Maurer–Cartan one–form ρ on a matrix Lie group G, and show that

dρ+ ρ ∧ ρ = 0.

Set ρ =
∑

α σ
αTα, where the one–forms {σα} span the space of the left-invariant

one–forms, and Tα are the generators of the Lie algebra of G which satisfy

[Tα, Tβ ] =
∑

γ

cγαβTγ

for some structure constants cγαβ . Show that

dσγ =
∑

α,β

fγ
αβσ

α ∧ σβ

for some constants fγ
αβ which should be determined.

Find a matrix representation of a 2–dimensional Lie group acting on a real line by
x → ax + b, where (a, b) ∈ R

+ × R, and construct the left–invariant one–forms on this
group.
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3

Let x ∈ R
3, and let E,B be vector fields on R

3 which do not explicitly depend on
t. Show that the trajectories x(t) of a particle with equations of the motion

ẍ = E+ 2B ∧ ẋ (1)

are unparametrised geodesics of a certain connection (which should be constructed) on
R
3 × R.

Now assume E = −∇U,∇.B = 0. Show that in this case the solution curves of (1)
can alternatively be obtained from a Kaluza–Klein reduction of a metric on R

5

ds2 = −2Udt2 − 4A.dxdt + 2dtdu+ dx.dx

along a null isometry ∂/∂u, where A is some vector potential on R
3.

4

Write an essay on topological degree of maps between manifolds, and its role in field
theory.
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