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Consider a flat FRW universe filled with two non-interacting perfect fluids with equations
of state wm = 0 and wX = −1

3
. The Friedmann equation is

H2 ≡
(

1

a

da

dt

)2

=
8πG

3

∑

i=m,X

ρi ,

where the energy density of each fluid, ρi, satisfies

dρi
dt

= −3H(1 + wi)ρi .

Use t0 for the present time, H0 for the Hubble constant and Ωi,0 ≡ 8πGρi(t0)/3H
2
0 for the

dimensionless density of each component today. The present value of the scale factor is
normalized to unity, i.e. a(t0) ≡ 1.

i) Show that the evolution of the conformal Hubble parameter H ≡ a′/a satisfies

2H′ +H2 − α2 = 0 ,

where primes denote derivatives with respect to conformal time τ , and the constant
α should be determined in terms of H0 and Ωm,0.

[Hint: Show that ρXa2 = const.]

ii) Show that the parametric solution for the scale factor a(τ) and the physical time
t(τ) is

a(τ) =
1

2

Ωm,0

(1− Ωm,0)

[

cosh(ατ)− 1
]

,

t(τ) =
H−1

0

2

Ωm,0

(1− Ωm,0)3/2
[

sinh(ατ) − ατ
]

.

iii) Find an expression for the age of this universe t0 in terms of H0 and Ωm,0 and show
that it satisfies

2

3
H−1

0 6 t0 6 H−1
0 ,

for all values of Ωm,0.

[You may use that sinh−1 x = x− 1
6
x3 + · · · for |x| < 1.]
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The early universe was dominated by relativistic species. Per degree of freedom, the
number density and energy density of relativistic species are

bosons:

fermions:
n = 0.12T 3

{

1
3
4

ρ = 3.3T 4

{

1
7
8

,

where T is the temperature. The Hubble expansion rate then is

H = 1.66

√
g⋆ T

2

Mpl

,

where Mpl ≡ 1.2 × 1019 GeV and g⋆ is the effective number of relativistic degrees of
freedom.

1) Consider a theory beyond the Standard Model which contains an extra species of
massless neutrinos whose interaction rate is given by Γ = G2

νT
5, where Gν ≈ 10−12

GeV−2.

i) Estimate the temperature Tdec at which these neutrinos decouple from thermal
equilibrium.

[You may assume that all particles of the Standard Model are relativistic at Tdec, so

that g⋆(Tdec) ∼ 100.]

ii) What is the present temperature of these neutrinos relative to T0 ≈ 2× 10−13 GeV,
the present temperature of the CMB? Explain your reasoning. What is the present
number density of these neutrinos relative to that of the CMB photons?

[Hint: Make sure to take into account the decoupling of the ordinary neutrinos at

T ∼ 1 MeV.]

2) Now, let these neutrinos have a mass mν .

i) If T0 < mν < Tdec, give an estimate for the upper bound on the neutrino mass
coming from the requirement that their fractional energy density satisfies Ων . 0.1.

[You may use that the fractional energy density in photons is Ωγ ∼ 5× 10−5.]

ii) Discuss qualitatively why a large mass, mν ≫ Tdec, is still compatible with the
standard cosmology.
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Consider a homogenous scalar field, φ(t) (the ‘inflaton’), with potential energy density
V (φ). Its equations of motion in a flat FRW spacetime are

φ̈+ 3Hφ̇+ V ′ = 0 , H2 =
1

3M2
pl

(

1

2
φ̇2 + V

)

,

where overdots denote derivatives with respect to physical time t, primes denote derivatives
with respect to the inflaton, H is the Hubble parameter, and Mpl is the reduced Planck
mass.

i) Describe qualitatively how quantum fluctuations in the inflaton field lead to fluctuations
in the comoving curvature perturbation, R, on super-Hubble scales.

ii) The resulting power spectrum of R is

∆2
R(k) =

(

H

φ̇

)2(H

2π

)2

,

where the right-hand side is evaluated at k = aH.

Define the slow-roll approximation and use it to write the power spectrum in terms of V
and ǫ ≡ 1

2
M2

pl(V
′/V )2.

Show that the spectral index ns(k) ≡ 1 + d ln∆2
R
(k)/d ln k, is

ns(k) ≈ 1− 6ǫ+ 2η ,

where η ≡ M2
plV

′′/V .

iii) Now consider the potential V (φ) = 1
2
m2φ2. Determine the value of m for which this

model leads to the observed amplitude of curvature perturbations, ∆2
R
(k⋆) = 2.2 × 10−9,

where k⋆ corresponds to a mode that exited the Hubble radius 50 e-folds before the end
of inflation.

How does the prediction for ns(k⋆) compare with the measurement from the Planck
satellite, ns = 0.96 ± 0.02?

iv) Inflation also predicts a stochastic background of gravitational waves with a power
spectrum given by

∆2
h(k) =

8

M2
pl

(

H

2π

)2

.

Compute the tensor-to-scalar ratio r ≡ ∆2
h(k⋆)/∆

2
R
(k⋆) for V (φ) = 1

2
m2φ2. How does it

compare to the bound from the Planck satellite, r < 0.09?
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Consider a flat FRW universe filled with cold dark matter (c) and radiation (r). The dark
matter density contrast (in comoving gauge) satisfies

∆′′

c +
a′

a
∆′

c = 4πGa2(ρ̄c∆c + 2ρ̄r∆r) (⋆)

where primes denote derivatives with respect to conformal time τ , and ρ̄c and ρ̄r are the
background densities. Assume that the perturbations are adiabatic on superhorizon scales,
i.e. for kτ ≪ 1, where k is the comoving wavenumber.

i) Show that outside the horizon the growing mode solution of (⋆) is ∆c ∝ τ2, in both
the radiation-dominated era (a ∝ τ) and the matter-dominated era (a ∝ τ2).

[Hint: First show that adiabatic superhorizon fluctuations satisfy the relation ∆r =
4
3
∆c.]

ii) Describe qualitatively the evolution of ∆r(τ) inside the horizon. Explain why its
contribution to the right-hand side of (⋆) can then be ignored. Show that the
growing mode solution of (⋆) in the radiation-dominated era is ∆c ∝ ln τ .

iii) Show that in the matter-dominated era ∆c grows as τ
2 on all scales.

iv) Early in the radiation era, ∆c has the following spectrum

k3

2π2
|∆c(k, τ)|2 = Aτ4k4 , for kτ < 1 .

Using your previous results, explain why the spectrum retains the same shape in
the matter era for modes with kτeq < 1, but changes for modes with kτeq ≫ 1:

k3

2π2
|∆c(k, τ)|2 = A

(

τ

τeq

)4

(ln(kτeq))
2 , for kτeq ≫ 1 ,

where τeq is the time of matter-radiation equality.

Sketch the final form of the spectrum today.
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