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a) Let (M, g) be a D-dimensional manifold with metric and Levi-Civita connection. Let Σ
be a (D− 1)-dimensional hypersurface of M and X a vector field that is nowhere tangent
to Σ. Briefly describe the construction of coordinates adapted to the integral curves of X.

b) Let (M, g) be a 4-dimensional spacetime with metric and Levi-Civita connection. The
spacetime is defined to be stationary if there exists a coordinate chart {xµ}, µ = 0, 1, 2, 3,
with timelike coordinate x0 (i.e. g00 < 0) such that the metric components satisfy
∂0gµν = 0. The spacetime is defined to be static if there exists a coordinate chart such
that ∂0gµν = 0 and g0i = 0 where i = 1, 2, 3.

(i) Show that the spacetime is stationary if and only if there exists a timelike Killing vector
field V .

(ii) Show that if the spacetime is static, there exists a timelike Killing vector field that
satisfies V[α∇µVν] = 0.

(iii) Now consider the reverse of question (ii): let V be a timelike Killing vector field with
V[α∇µVν] = 0. Show that the condition V[α∇µVν] = 0 implies

∇µ

(

|V |nVν

)

−∇ν

(

|V |nVµ

)

= 0 , (†)

where |V |2 := VρV
ρ and n is an integer number. Determine n.

(iv) The general solution Vα to Eq. (†) can be expressed in terms of the gradient of
a scalar function φ. Show that this scalar function is of the form φ = x0 + f(xi)
where f is a free function. Use the scalar φ to transform from {xµ} to new coor-
dinates {x̄α} where ḡ0i = 0 and ∂0ḡµν = 0 and thus prove that the metric is static.

Part III, Paper 52



3

2

a) Einstein’s first attempt to formulate the field equations of general relativity was
Rab = κTab, where Rab, Tab and κ are the Ricci tensor, energy-momentum tensor and
a constant, respectively. Argue how this equation is problematic considering conservation
of energy-momentum and the contracted Bianchi identities.

b) Let (M, gab) be a four-dimensional spacetime with Levi-Civita connection. The
determinant g of the metric satisfies ∂g/∂gαβ = g gαβ .

(i) Show that the trace of the Christoffel symbols satisfies

Γρ
ρµ =

1√−g
∂µ

√−g .

(ii) Show that the two expressions for the energy momentum Tαβ in terms of the matter
part SM of the action

Tαβ = −2
∂L

∂gαβ
+ Lgαβ , Tαβ = − 2√−g

∂(
√−gL)

∂gαβ
,

are equivalent. Here L is the Lagrangian in the action

SM =

∫

M

L(φ, φ,α, gαβ)
√−g d4x .

(iii) The matter action of a minimally coupled scalar field is given by

S =

∫

M

√−g

[

−1

2
gµν(∇µφ) (∇νφ)− V (φ)

]

d4x , (†)

with the potential V (φ). Derive the equations of motion for the scalar field under the
assumption that the variation of the scalar field vanishes on ∂M.

(iv) Calculate the energy momentum tensor Tαβ associated with the action S of Eq. (†)
and show that this energy momentum tensor obeys the conservation law ∇µT

µ
α = 0 pro-

vided that the equations of motion are satisfied.

Part III, Paper 52 [TURN OVER



4

3

Let (M, gµν) be a four-dimensional, globally hyperbolic spacetime with coordinates
(xµ) and the Levi-Civita connection Γµ

νρ. The determinant g of the metric satisfies
∂g/∂gαβ = g gαβ . The Riemann tensor is given by

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ .

The coordinates (xµ) are called harmonic coordinates if they satisfy

∇µ∇µx
α = 0 , (†)

where the xα are treated as scalar functions in the covariant dervative.

(i) Briefly comment on whether or not Eq. (†) is a tensorial equation.

(ii) Show that the harmonic gauge condition can be formulated in the following two
equivalent forms

gβγΓα
βγ = 0 ⇔ ∂ν

(√−g gµν
)

= 0 .

(iii) Show that in harmonic coordinates, the vacuum Einstein equations can be written in
the form

Rαβ = −1

2
gµν∂µ∂νgαβ + . . . = 0 ,

where the dots denote terms (which need not be evaluated explicitly) containing at most
first derivatives of the metric components.

(iv) In the “3+1” split of the Einstein equations, the spacetime metric and its inverse are
written as

gαβ =

(

−α2 + βkβ
k βj

βi γij

)

, gαβ =

(

−α−2 α−2βj

α−2 γij − α−2βiβj

)

,

where Latin indices range from 1 to 3, γij is the spatial metric, γij its inverse, βi the shift
vector, βj = γjiβ

i and α is the lapse function. The ADM equation for the time derivative
of the the spatial metric is given by

∂tγij − βk∂kγij − γkj∂iβ
k − γik∂jβ

k = −2αKij .

Show that this equation implies

∂tγ − βk∂kγ − 2γ∂kβ
k = −2αγK ,

where K = γmnKmn is the trace of the extrinsic curvature.

(v) The harmonic slicing condition is defined by ∇µ∇µx
0 = 0 where x0 = t denotes the

time coordinate in the 3+1 decomposition. Show that the harmonic slicing condition
implies

∂tα− βi∂iα = f(α)K ,

where f is a function of the lapse α. Determine f(α). [You may use that g = −α2γ].
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a) Briefly describe the diffeomorphism invariance of general relativity (formulas need not
be given). What is a spacetime in mathematical terms?

b) Let M be a manifold with coordinate chart (xµ), metric gµν and a connection Γα
µν

which need not be the Levi-Civita connection. The torsion tensor is defined as

Tµν
λ = Γλ

µν − Γλ
νµ .

We furthermore define the tensor

Nµνα = ∇αgµν ,

where ∇ denotes the covariant derivative associated with Γα
µν . The Christoffel symbols

are defined as

Sρ
µν =

1

2
gρα
(

∂µgνα + ∂νgαµ − ∂αgµν
)

.

(i) By expanding the covariant derivative ∇αgµν of the metric, show that

Γρ
µν = Sρ

µν −Kµν
ρ +Wµν

ρ ,

where

Kµν
ρ = −Tµν

ρ − Tν
ρ
µ + T ρ

µν ,

Wµν
ρ =

1

2

(

Nµν
ρ −Nν

ρ
µ −Nρ

µν

)

.

(ii) Briefly interprete the result.

(iii) Let p ∈ M. The exponential map is defined as

e : Tp(M) → M , Xp 7→ q ,

where q is the point a unit affine parameter distance from p along the geodesic through p
with tangent Xp in p. Show that the vector Yp := tXp, t ∈ [0, 1] is mapped under e to the
point at affine parameter distance t from p along the same geodesic.

(iv) Show that at the point p in normal coordinates constructed at p

Sλ
µν +Wµν

λ − 1

2
T λ

µν −
1

2
T λ

νµ = 0 .
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