MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2015 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 5

ANALYSIS OF PARTIAL DIFFERENTIAL EQUATIONS

There are **THREE** questions in total. Attempt all **THREE** questions. The questions carry equal weight of 40 percent.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

This question deals with hyperbolic transport equations.

1. Let us consider the transport equation

$$\begin{cases} \partial_t u + c(t, x) \, \partial_x u = 0, \quad \forall \, t \ge 0, \, \, x \in \mathbb{R} \\ u(0, x) = u_0(x), \quad \forall \, x \in \mathbb{R} \end{cases}$$

with $c \in C^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ and $u_0 \in L^{\infty}(\mathbb{R})$.

- (a) Recall the definition of weak $L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ solutions.
- (b) Let us assume that c(t, x) := x and that u_0 is C^1 on \mathbb{R} , then describe the characteristic method and deduce the formula for the classical solutions.
- (c) Show that when u_0 is now merely $L^{\infty}(\mathbb{R})$, this formula still provides a weak $L^{\infty}(\mathbb{R}_+ \times \mathbb{R})$ solution, and prove the uniqueness of such solutions.
- 2. Let us consider (for a > 0):

$$\begin{cases} \forall x, t \ge 0, \quad \partial_t u + a \partial_x u = 0\\ \forall x \ge 0, \quad u(0, x) = u_0(x)\\ \forall t \ge 0, \quad u(t, 0) = f(t) \end{cases}$$
(1)

where u_0 and f are in $L^{\infty}(\mathbb{R}_+)$.

- (a) Define the *characteristic curves* (i.e. the curves on which u remains constant) and give their formula, and deduce an explicit formula for the solution (no proof of uniqueness is required here). What conditions on u_0 and f ensures that this solution is a classical solution? What conditions on u_0 and f ensure that $u(t, \cdot) \in C^{\infty}(\mathbb{R}_+)$ for all $t \ge 0$?
- (b) Prove that this formula indeed constructs a weak solution and that such a weak solution is unique.
- 3. We discuss an exact form for the solution to the Burgers equation and its decay along time. Let f smooth strictly concave with f(0) = 0 and f'(0) = c, $c \in \mathbb{R}$ and f' bijective on \mathbb{R} . We consider the evolution problem

$$\begin{cases} \forall t \in \mathbb{R}_+, \ \forall x \in \mathbb{R}, & \partial_t u + \partial_x f(u) = 0, \\ \forall x \in \mathbb{R}, & u(x, 0) = u_0(x) \end{cases}$$

with u_0 smooth and compactly supported with support included in [-A, A].

- (a) Let us denote $t^* \in (0, +\infty]$ the time of existence of a smooth solution. Recall the formula for this time t^* and the explicit formula for the solution up to this time.
- (b) Prove that for all $t \in (0, t^*)$, $u(t, \cdot)$ is a smooth and compactly supported function on \mathbb{R} .
- (c) Let us denote $U(t,x) = \int_{-\infty}^{x} u(t,y) \, dy$. Write an evolution equation for U.

UNIVERSITY OF

(d) Prove that for all $s \in \mathbb{R}$, $t \in (0, t^*)$, $x \in \mathbb{R}$,

$$sf'(s) - f(s) \leq \partial_t U(t, x) + f'(s)\partial_x U(t, x).$$

Deduce that if $x(t) := x_0 + tf'(s)$ one has

$$t\left[sf'(s) - f(s)\right] \leqslant U(t, x) - U(0, x_0).$$

(e) Let us denote $h := (f')^{-1}$ and $g(z) := zh(z) - f(h(z)), z \in \mathbb{R}$. Prove that

$$U(t,x) = \max_{y \in \mathbb{R}} \left[U(0,y) + tg\left(\frac{x-y}{t}\right) \right].$$

Deduce that $u(t, x) = h((x - x_0)/t)$.

Hint: Prove first that U(t, x) is greater or equal to the right hand side, then prove that the equality is realised when $y = x_0$ by saturating the previous inequality at $s = \partial_x U(t, x(t)) = \partial_x U(0, x_0)$.

(f) Assume that $k_- < h'/2 < k_+$ on \mathbb{R} with $k_- < k_+ < 0$, then prove that

$$\forall z \in \mathbb{R}, \quad \begin{cases} k_-(z-c) \leqslant \frac{h(z)}{2} \leqslant k_+(z-c) \\ k_-(z-c)^2 \leqslant g(z) \leqslant k_+(z-c)^2. \end{cases}$$

(g) Let us denote for $t \in (0, t^*)$ and $x \in \mathbb{R}$:

$$G_{t,x}(y) := \int_{-\infty}^{y} u_0(z) \,\mathrm{d}z + tg\left(\frac{x-y}{t}\right).$$

Prove that

$$-\|u_0\|_{L^1} \leqslant \max_{y \in \mathbb{R}} G_{t,x}(y) \leqslant \|u_0\|_{L^1} + \frac{k_+}{t}(x - x_0 - ct)^2.$$

Deduce that

$$\left|\frac{x-x_0}{t}-c\right| \leqslant \sqrt{\frac{2\|u_0\|_1}{-k_+t}},$$

and finally

$$|u(t,x)| \leq \frac{K}{\sqrt{t}}, \quad K := -2k_{-}\sqrt{\frac{2\|u_0\|_1}{-k_+}}.$$

Part III, Paper 5

[TURN OVER

 $\mathbf{2}$

This question deals with complex Hilbertian analysis, compact operators and the original proof of Weyl's theorem. We recall that a (complex) Banach space is a complete normed real vector space, and a (complex) Hilbert space is a separable (real) Banach space whose norm derives from a Hermitian inner product.

- 1. Prove that a Hilbert space is finite-dimensional if and only if its unit ball is strongly compact (i.e. compact in the topology induced by the norm). Hint: Prove that if the dimension is infinite there exists an infinite sequence f_n in the unit ball so that $||f_n - f_m|| = 1$ for any $m \neq n$, by using an orthornormalisation process.
- 2. Prove that a Banach space is finite-dimensional if and only if its unit ball is strongly compact.

Hint: Prove that if the dimension is infinite there exists an infinite sequence f_n in the unit ball so that $||f_n - f_m|| = 1/2$ for any $m \neq n$, by using an "almost orthonormalisation" process.

3. Prove that the unit ball of a Hilbert space H is compact for the weak topology, i.e. any bounded sequence f_n of H has a subsequence $f_{\varphi(n)}$ (φ increasing from \mathbb{N} to \mathbb{N}) and $g \in H$ so that

$$\forall h \in H, \quad \langle f_{\varphi(n)}, h \rangle \xrightarrow[n \to +\infty]{} \langle g, h \rangle.$$

Hint: Use an Hilbertian base and the Cantor diagonal argument.

- 4. We consider from now on a Hilbert space H and a bounded operator L (i.e. a continuous linear application from H to H). The spectrum $\Sigma(L)$ is defined as the set of $\lambda \in \mathbb{C}$ so that $(L \lambda)$ is not invertible. Are necessarily all element of $\Sigma(L)$ eigenvalues, i.e. so that there is $f \in H$ with $Lf = \lambda f$? Give a proof or a counter-example.
- 5. We say that the bounded operator L is self-adjoint if

$$\forall\,f,g\in H,\quad \langle Lf,g\rangle=\langle f,Lf\rangle.$$

Prove that for such an operator $\Sigma(L) \subset \mathbb{R}$.

- 6. If L is a bounded self-adjoint operator and $\text{Ker}(L) = \{0\}$ prove that image is dense in H.
- 7. If L is a bounded self-adjoint operator prove that $\lambda \in \Sigma(L)$ if and only if there exists a sequence $f_n \in H$ with $||f_n|| = 1$ and $(L \lambda)f_n \to 0$.
- 8. If L is a bounded self-adjoint operator and Ker(L) is finite-dimensional does the range needs being closed? Justify your answers.
- 9. For L bounded self-adjoint operator on H, we define the discrete spectrum $\Sigma_d(L) \subset \Sigma(L)$ as the set of $\lambda \in \mathbb{R}$ so that $\operatorname{Ker}(L \lambda)$ is finite-dimensional and different from $\{0\}$, and $\operatorname{Im}(L)$ is closed. The essential spectrum $\Sigma_e(L)$ is the remainder $\Sigma(L) \setminus \Sigma_d(L)$. Prove that $0 \notin \Sigma_e(L)$ if and only if every bounded sequence f_n of H with Lf_n converging has a convergent subsequence.

UNIVERSITY OF

- 5
- 10. Prove that $\lambda \in \Sigma_e(L)$ if and only if there exists a sequence $f_n \in H$ with $||f_n|| = 1$, f_n weakly converging to zero in H and $(L \lambda)f_n \to 0$.
- 11. The bounded operator K is said *compact* if it maps the unit ball to a set whose closure is compact (for the strong topology). Prove that a bounded operator K is compact if and only if: for any f_n weakly converging in H, then Kf_n is strongly converging.

Hint: You can use without a proof here the fact (uniform boundedness principle) that a weakly converging subsequence is bounded.

12. Let L be a self-adjoint bounded operator on H, and K be compact and self-adjoint bounded operator on H, prove that $\Sigma_e(L) = \Sigma_e(L+K)$.

UNIVERSITY OF

3

This question deals with the regularity of elliptic equations with rough coefficients, and follows ideas due to De Giorgi, Nash and Moser. We consider the following equation for $u \ge 0$

$$\nabla_x \cdot (A(x)\nabla_x u) = 0, \quad x \in B(0,1) \subset \mathbb{R}^\ell, \ \ell \ge 1$$
(1)

where B(0,1) is the standard open ball, A = A(x) is a space-dependent symmetric matrix assumed to be a measurable function of x and such that

$$\forall x \in B(0,1), \lambda \operatorname{Id} \leq A(x) \leq \Lambda \operatorname{Id}$$

with Id the identity matrix, and $0 < \lambda < \Lambda < +\infty$.

- 1. We start with a preliminary study of the H^1 space in dimension one.
 - (a) Recall the definition of the space H¹((−a, a)) on an open interval (−a, a), a > 0.
 Hint: Do not forget that it is a subspace of L²((−a, a)) made of classes of
 - (b) Recall why any $u \in H^1((-a, a))$ is the limit in H^1 and almost everywhere of a sequence u_n of smooth functions on (-a, a).

equivalence for the relation of equivalence of being equal almost everywhere.

(c) Prove that any $u \in H^1((-a, a,))$ satisfies

ess
$$\sup_{x \neq y \in (-a,a)} \frac{|u(x) - u(y)|}{|x - y|^{1/2}} \leq ||u||_{H^1((-a,a))}$$

where "ess sup" mean the essential supremum, i.e. for almost every $x, y \in (-a, a), x \neq y$.

Hint: Use approximation and the fundamental theorem of calculus.

(d) Prove that any $u \in H^1((-a, a,))$ satisfies

$$||u||_{L^{\infty}(-a,a)} = \operatorname{ess sup}_{x \in (-a,a)} |u(x)| \leq ||u||_{H^{1}((-a,a))}$$

where "ess sup" mean the essential supremum, i.e. for almost every $x \in (-a, a)$.

Hint: Use approximation, the fundamental theorem of calculus and the point x_0 where a smooth function on (-a, a) is equal to its average.

2. When the dimension is one $\ell = 1$ (therefore A(x) is a real-valued measurable function), we shall prove the following estimate:

ess
$$\sup_{x \in (-1/2, 1/2)} |u(x)| + \operatorname{ess sup}_{x \neq y \in (-1/2, 1/2)} \frac{|u(x) - u(y)|}{|x - y|^{1/2}} \leq C\left(\frac{\Lambda}{\lambda}\right) \|u\|_{L^2((-1, 1))}$$

(2)

for some constant $C(\Lambda/\lambda)$ depending only on the ratio Λ/λ .

Part III, Paper 5

CAMBRIDGE

(a) Consider a smooth function ζ that is equal to one on (-1/2, 1/2) and zero outside (-1, 1), and prove that any smooth solution to (1) satisfies

$$\int_{(-1/2,1/2)} u'(x)^2 \, \mathrm{d}x \le 4 \left(\frac{\Lambda}{\lambda}\right)^2 \int_{(-1,1)} u(x)^2 |\zeta'(x)|^2 \, \mathrm{d}x.$$

- (b) Deduce the estimate (2) by combining the previous section and approximation arguments.
- 3. In general dimension $\ell \ge 2$, we shall prove the following weaker result of gain of integrability only (the gain of Hölder regularity is also true but will not be considered here):

ess
$$\sup_{x \in B(0,1/2)} |u(x)| \leq C\left(\ell, \frac{\Lambda}{\lambda}\right) ||u||_{L^2(B(0,1))}$$
 (3)

for some constant $C(\ell, \Lambda/\lambda)$ depending only on the dimension ℓ and the ratio Λ/λ .

(a) For a smooth function ζ that is equal to one on $B(0, r_1)$ and zero outside $B(0, r_2), 0 < r_1 < r_2 \leq 1$, prove that any smooth solution to (1) satisfies

$$\int_{B(0,r_1)} |\nabla_x u(x)|^2 \, \mathrm{d}x \leqslant 4 \left(\frac{\Lambda}{\lambda}\right)^2 \int_{B(0,r_2)} u(x)^2 |\nabla_x \zeta(x)|^2 \, \mathrm{d}x$$

(b) Deduce that there exists $\alpha>1$ and a constant $C(\ell)$ depending on the dimension so that

$$||u||_{L^{2\alpha}(B(0,r_1))} \leq \frac{C(\ell)}{(r_2 - r_1)} \left(\frac{\Lambda}{\lambda}\right) ||u||_{L^2(B(0,r_2))}.$$

Hint: You can use the following Sobolev embedding result on B(0, 1/2): for any $p \in [2, p^*)$ there is a constant $C(\ell, p)$ so that

$$||u||_{L^p(B(0,1/2))} \leq C(\ell,p)||u||_{H^1(B(0,1/2))}$$

with $p^* = +\infty$ in dimension $\ell = 2$ and $p^* = 2\ell/(\ell - 2)$ else.

(c) Prove that if u is a smooth solution to (1) then for any $q \ge 2$, the previous estimate can be performed on $u^{q/2}$ (with an additional term *which has the good sign*!) to get

$$\int_{B(0,r_1)} |\nabla_x u^{q/2}(x)|^2 \, \mathrm{d}x \leqslant 4 \left(\frac{\Lambda}{\lambda}\right)^2 \int_{B(0,r_2)} u(x)^q |\nabla_x \zeta(x)|^2 \, \mathrm{d}x$$

and finally

$$\|u\|_{L^{q\alpha}(B(0,r_1))} \leq \frac{C(\ell)}{(r_2 - r_1)^{2/q}} \left(\frac{\Lambda}{\lambda}\right)^{2/q} \|u\|_{L^q(B(0,r_2))}$$

(d) (Hard question) By an iteration prove the desired estimate (3). *Hint:* Use the sequence of Lebesgue exponents and radii $q_i = 2\alpha^i$ and $r_i = 1/2 + 1/2^{i+1}$, $i \ge 0$.

Part III, Paper 5

[TURN OVER

END OF PAPER