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This question deals with hyperbolic transport equations.

1. Let us consider the transport equation

{

∂tu+ c(t, x) ∂xu = 0, ∀ t > 0, x ∈ R

u(0, x) = u0(x), ∀x ∈ R

with c ∈ C∞(R+ × R) and u0 ∈ L∞(R).

(a) Recall the definition of weak L∞(R+ × R) solutions.

(b) Let us assume that c(t, x) := x and that u0 is C1 on R, then describe the
characteristic method and deduce the formula for the classical solutions.

(c) Show that when u0 is now merely L∞(R), this formula still provides a weak
L∞(R+ × R) solution, and prove the uniqueness of such solutions.

2. Let us consider (for a > 0):







∀x, t > 0, ∂tu+ a∂xu = 0
∀x > 0, u(0, x) = u0(x)
∀ t > 0, u(t, 0) = f(t)

(1)

where u0 and f are in L∞(R+).

(a) Define the characteristic curves (i.e. the curves on which u remains constant)
and give their formula, and deduce an explicit formula for the solution (no
proof of uniqueness is required here). What conditions on u0 and f ensures
that this solution is a classical solution? What conditions on u0 and f ensure
that u(t, ·) ∈ C∞(R+) for all t > 0?

(b) Prove that this formula indeed constructs a weak solution and that such a
weak solution is unique.

3. We discuss an exact form for the solution to the Burgers equation and its decay
along time. Let f smooth strictly concave with f(0) = 0 and f ′(0) = c, c ∈ R and
f ′ bijective on R. We consider the evolution problem

{

∀ t ∈ R+, ∀x ∈ R, ∂tu+ ∂xf(u) = 0,
∀x ∈ R, u(x, 0) = u0(x)

with u0 smooth and compactly supported with support included in [−A,A].

(a) Let us denote t∗ ∈ (0,+∞] the time of existence of a smooth solution. Recall
the formula for this time t∗ and the explicit formula for the solution up to
this time.

(b) Prove that for all t ∈ (0, t∗), u(t, ·) is a smooth and compactly supported
function on R.

(c) Let us denote U(t, x) =
∫ x
−∞

u(t, y) dy. Write an evolution equation for U .
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(d) Prove that for all s ∈ R, t ∈ (0, t∗), x ∈ R,

sf ′(s)− f(s) 6 ∂tU(t, x) + f ′(s)∂xU(t, x).

Deduce that if x(t) := x0 + tf ′(s) one has

t
[

sf ′(s)− f(s)
]

6 U(t, x)− U(0, x0).

(e) Let us denote h := (f ′)−1 and g(z) := zh(z) − f(h(z)), z ∈ R. Prove that

U(t, x) = max
y∈R

[

U(0, y) + tg

(

x− y

t

)]

.

Deduce that u(t, x) = h((x− x0)/t).
Hint: Prove first that U(t, x) is greater or equal to the right hand side, then
prove that the equality is realised when y = x0 by saturating the previous
inequality at s = ∂xU(t, x(t)) = ∂xU(0, x0).

(f) Assume that k− < h′/2 < k+ on R with k− < k+ < 0, then prove that

∀ z ∈ R,







k−(z − c) 6
h(z)

2
6 k+(z − c)

k−(z − c)2 6 g(z) 6 k+(z − c)2.

(g) Let us denote for t ∈ (0, t∗) and x ∈ R:

Gt,x(y) :=

∫ y

−∞

u0(z) dz + tg

(

x− y

t

)

.

Prove that

−‖u0‖L1 6 max
y∈R

Gt,x(y) 6 ‖u0‖L1 +
k+
t
(x− x0 − ct)2.

Deduce that
∣

∣

∣

∣

x− x0
t

− c

∣

∣

∣

∣

6

√

2‖u0‖1
−k+t

,

and finally

|u(t, x)| 6 K√
t
, K := −2k−

√

2‖u0‖1
−k+

.
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This question deals with complex Hilbertian analysis, compact operators and the
original proof of Weyl’s theorem. We recall that a (complex) Banach space is a complete
normed real vector space, and a (complex) Hilbert space is a separable (real) Banach space
whose norm derives from a Hermitian inner product.

1. Prove that a Hilbert space is finite-dimensional if and only if its unit ball is strongly
compact (i.e. compact in the topology induced by the norm).
Hint: Prove that if the dimension is infinite there exists an infinite sequence fn in
the unit ball so that ‖fn − fm‖ = 1 for any m 6= n, by using an orthornormalisation
process.

2. Prove that a Banach space is finite-dimensional if and only if its unit ball is strongly
compact.
Hint: Prove that if the dimension is infinite there exists an infinite sequence fn
in the unit ball so that ‖fn − fm‖ = 1/2 for any m 6= n, by using an “almost
orthonormalisation” process.

3. Prove that the unit ball of a Hilbert space H is compact for the weak topology, i.e.
any bounded sequence fn of H has a subsequence fϕ(n) (ϕ increasing from N to N)
and g ∈ H so that

∀h ∈ H, 〈fϕ(n), h〉 −−−−−→
n→+∞

〈g, h〉.

Hint: Use an Hilbertian base and the Cantor diagonal argument.

4. We consider from now on a Hilbert space H and a bounded operator L (i.e. a
continuous linear application from H to H). The spectrum Σ(L) is defined as the
set of λ ∈ C so that (L − λ) is not invertible. Are necessarily all element of Σ(L)
eigenvalues, i.e. so that there is f ∈ H with Lf = λf? Give a proof or a counter-
example.

5. We say that the bounded operator L is self-adjoint if

∀ f, g ∈ H, 〈Lf, g〉 = 〈f, Lf〉.

Prove that for such an operator Σ(L) ⊂ R.

6. If L is a bounded self-adjoint operator and Ker(L) = {0} prove that image is dense
in H.

7. If L is a bounded self-adjoint operator prove that λ ∈ Σ(L) if and only if there
exists a sequence fn ∈ H with ‖fn‖ = 1 and (L− λ)fn → 0.

8. If L is a bounded self-adjoint operator and Ker(L) is finite-dimensional does the
range needs being closed? Justify your answers.

9. For L bounded self-adjoint operator on H, we define the discrete spectrum Σd(L) ⊂
Σ(L) as the set of λ ∈ R so that Ker(L − λ) is finite-dimensional and different
from {0}, and Im(L) is closed. The essential spectrum Σe(L) is the remainder
Σ(L) \Σd(L). Prove that 0 6∈ Σe(L) if and only if every bounded sequence fn of H
with Lfn converging has a convergent subsequence.

Part III, Paper 5



5

10. Prove that λ ∈ Σe(L) if and only if there exists a sequence fn ∈ H with ‖fn‖ = 1,
fn weakly converging to zero in H and (L− λ)fn → 0.

11. The bounded operator K is said compact if it maps the unit ball to a set whose
closure is compact (for the strong topology). Prove that a bounded operator K is
compact if and only if: for any fn weakly converging in H, then Kfn is strongly
converging.
Hint: You can use without a proof here the fact (uniform boundedness principle)
that a weakly converging subsequence is bounded.

12. Let L be a self-adjoint bounded operator on H, and K be compact and self-adjoint
bounded operator on H, prove that Σe(L) = Σe(L+K).
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This question deals with the regularity of elliptic equations with rough coefficients,
and follows ideas due to De Giorgi, Nash and Moser. We consider the following equation
for u > 0

∇x · (A(x)∇xu) = 0, x ∈ B(0, 1) ⊂ R
ℓ, ℓ > 1 (1)

where B(0, 1) is the standard open ball, A = A(x) is a space-dependent symmetric matrix
assumed to be a measurable function of x and such that

∀x ∈ B(0, 1), λ Id 6 A(x) 6 Λ Id

with Id the identity matrix, and 0 < λ < Λ < +∞.

1. We start with a preliminary study of the H1 space in dimension one.

(a) Recall the definition of the space H1((−a, a)) on an open interval (−a, a),
a > 0.
Hint: Do not forget that it is a subspace of L2((−a, a)) made of classes of
equivalence for the relation of equivalence of being equal almost everywhere.

(b) Recall why any u ∈ H1((−a, a)) is the limit in H1 and almost everywhere of
a sequence un of smooth functions on (−a, a).

(c) Prove that any u ∈ H1((−a, a, )) satisfies

ess supx 6=y∈(−a,a)
|u(x)− u(y)|
|x− y|1/2 6 ‖u‖H1((−a,a))

where “ess sup” mean the essential supremum, i.e. for almost every x, y ∈
(−a, a), x 6= y.
Hint: Use approximation and the fundamental theorem of calculus.

(d) Prove that any u ∈ H1((−a, a, )) satisfies

‖u‖L∞(−a,a) = ess supx∈(−a,a)|u(x)| 6 ‖u‖H1((−a,a))

where “ess sup” mean the essential supremum, i.e. for almost every x ∈
(−a, a).
Hint: Use approximation, the fundamental theorem of calculus and the point
x0 where a smooth function on (−a, a) is equal to its average.

2. When the dimension is one ℓ = 1 (therefore A(x) is a real-valued measurable
function), we shall prove the following estimate:

ess supx∈(−1/2,1/2)|u(x)| + ess supx 6=y∈(−1/2,1/2)
|u(x)− u(y)|
|x− y|1/2 6 C

(

Λ

λ

)

‖u‖L2((−1,1))

(2)

for some constant C(Λ/λ) depending only on the ratio Λ/λ.
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(a) Consider a smooth function ζ that is equal to one on (−1/2, 1/2) and zero
outside (−1, 1), and prove that any smooth solution to (1) satisfies

∫

(−1/2,1/2)
u′(x)2 dx 6 4

(

Λ

λ

)2 ∫

(−1,1)
u(x)2|ζ ′(x)|2 dx.

(b) Deduce the estimate (2) by combining the previous section and approximation
arguments.

3. In general dimension ℓ > 2, we shall prove the following weaker result of gain of
integrability only (the gain of Hölder regularity is also true but will not be considered
here):

ess supx∈B(0,1/2)|u(x)| 6 C

(

ℓ,
Λ

λ

)

‖u‖L2(B(0,1)) (3)

for some constant C(ℓ,Λ/λ) depending only on the dimension ℓ and the ratio Λ/λ.

(a) For a smooth function ζ that is equal to one on B(0, r1) and zero outside
B(0, r2), 0 < r1 < r2 6 1, prove that any smooth solution to (1) satisfies

∫

B(0,r1)
|∇xu(x)|2 dx 6 4

(

Λ

λ

)2 ∫

B(0,r2)
u(x)2|∇xζ(x)|2 dx.

(b) Deduce that there exists α > 1 and a constant C(ℓ) depending on the
dimension so that

‖u‖L2α(B(0,r1)) 6
C(ℓ)

(r2 − r1)

(

Λ

λ

)

‖u‖L2(B(0,r2)).

Hint: You can use the following Sobolev embedding result on B(0, 1/2): for
any p ∈ [2, p∗) there is a constant C(ℓ, p) so that

‖u‖Lp(B(0,1/2)) 6 C(ℓ, p)‖u‖H1(B(0,1/2))

with p∗ = +∞ in dimension ℓ = 2 and p∗ = 2ℓ/(ℓ − 2) else.

(c) Prove that if u is a smooth solution to (1) then for any q > 2, the previous
estimate can be performed on uq/2 (with an additional term which has the
good sign!) to get

∫

B(0,r1)
|∇xu

q/2(x)|2 dx 6 4

(

Λ

λ

)2 ∫

B(0,r2)
u(x)q|∇xζ(x)|2 dx

and finally

‖u‖Lqα(B(0,r1)) 6
C(ℓ)

(r2 − r1)2/q

(

Λ

λ

)2/q

‖u‖Lq(B(0,r2)).

(d) (Hard question) By an iteration prove the desired estimate (3).
Hint: Use the sequence of Lebesgue exponents and radii qi = 2αi and
ri = 1/2 + 1/2i+1, i > 0.
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