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The closed Nambu-Goto string of tension T , in a four-dimensional Minkowski
spacetime with cartesian coordinates {Xm;m = 0, 1, 2, 3}, has phase-space action

I[X,P ; e, u] =

∫

dt

∮

dσ

{

ẊmPm −
1

2
e
[

P 2 + (TX ′)2
]

− uX ′mPm

}

,

where (e, u) are Lagrange multipliers for constraints. Find the equations of motion for
(X,P ). Explain briefly why the constraints are associated to gauge invariances of the
action. [You should not attempt to derive the gauge transformations or compute Poisson

brackets.]

Show that the phase-space action is equivalent to the Nambu-Goto action ING[X]
given by the area of the worldsheet in the induced metric. By varying ING[X], or otherwise,
find the Nambu-Goto equations of motion for Xm(t, σ). Show that these equations are
solved by the following closed string configuration (for positive constant R):

X0 = Rt , X3 = 0 , X1 + iX2 = (R cos t) eiσ .

Describe the motion. What is the proper length of the string? What is its total energy?

For a string that is open rather than closed, show that the boundary conditions at
the ends of the string must be such that for any variation δ ~X of the space components of
X,

(

~X ′ · δ ~X
)

ends

= 0 , ( ~X ′ = ∂σ ~X).

[It may be assumed that X0 and e are free variables at the endpoints, except for the

restriction e 6= 0.] This allows free-end boundary conditions, in which case

X ′|ends = 0 .

These boundary conditions are manifestly spacetime-translation and Lorentz invariant;
write down the respective Noether charges Pm and Jmn and verify that they are constants
of the motion.

Describe briefly the other possible open-string boundary conditions.

Part III, Paper 49



3

2

A free spin-2 particle of non-zero mass m is described by a symmetric tensor field
hmn satisfying the equations

(

�D −m2
)

hmn = 0 , ∂mhmn = 0 , ηmnhmn = 0 . (∗)

The last two of these equations are called the “subsidiary conditions”. By choosing
light-cone coordinates m = (+,−, I) and assuming that ∂− is invertible, show that the
subsidiary conditions can be solved for all but (D−2)(D+1)/2 components of hmn. What
is their SO(D−2) representation content. Which tensor of SO(D−1) has this SO(D−2)
decomposition?

In light-cone gauge, the open Nambu-Goto string with free ends in a D-dimensional
Minkowski spacetime has an action that can be put in the form

I[x, p,αk; e0] =

∫

dt

{

ẋmpm +

∞
∑

k=1

i

k
α−k · α̇k −

1

2
e0

(

p2 +M2
)

}

,

where {xm, pm;m = 0, 1, . . . D − 1} are the spacetime position and D-momentum of the
centre of mass. What is the significance of the variables αk and how does M2 depend on
them? Explain briefly how your result leads to an organisation of the mass spectrum of
the quantum string according to a non-negative integer level number N . Write down the
light-cone-gauge states of the open Nambu-Goto string at levels N = 0, 1, 2. Explain why
the N = 1 states must be massless. How are equations (∗) relevant to the N = 2 states?

For the Neveu-Schwarz sector of the open spinning string with free ends, light-cone
gauge quantization leads to an organisation of the mass spectrum according to a level N
such that 2N is a non-negative integer. Define the oscillator vacuum and hence show that
the first excited states (at level N = 1/2) are

bI
−

1

2

|0〉 ,

where you should explain the significance of the operator appearing in this expression.
Why must these states have zero mass? The massive states at level N = 1 are

αI

−1|0〉 , bI
−

1

2

bJ
−

1

2

|0〉 .

What are these representations of SO(D−2)? Why are they not the same as those relevant
to the massive spin-2 particle. How can they be assembled to form a tensor of SO(D−1)?
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Write the Nambu-Goto string action in Polyakov form I[X; γ], where γ is the
independent worldsheet metric. Show that elimination of the momentum variable P from
the phase-space action results in the Polyakov action with γ expressed in terms of the
Lagrange multipliers for the Hamiltonian constraints.

Define the conformal gauge in both the Hamiltonian and Polyakov formulations of
the Nambu-Goto string, and show that they are equivalent. Explain why the conformal
gauge choice leaves a residual invariance corresponding to conformal isometries of 2D
Minkowski space.

Implementation of gauge conditions in the path-integral approach to quantization
leads to an extension of the classical action to include Faddeev-Popov (anti)ghosts. State,
without proof, the prescription for finding this action, and apply it to deduce the FP ghost
action for the closed Nambu-Goto string. Explain briefly its relevance for cancellation of
the conformal anomaly. [You may use without proof the fact that the Virasoro algebra for

a conformally-invariant bc-ghost system has central charge −2(6J2 − 6J + 1) when b has

conformal dimension J .]

In units for which 2πT ≡ 1/α′ = 1, the Veneziano amplitude for the scattering of
two open-string tachyons is

A(s, t) =
Γ(−1− s)Γ(−1− t)

Γ(−2− s− t)
,

where (s, t) are Mandelstam variables. Explain briefly the physical significance of these
variables? Find the poles of A as a function of s for fixed t. Use your result to show that
there is a massless spin-1 bound state of two tachyons .

4

Write an essay on the “old covariant” approach to quantization of the Nambu-Goto
string. Your essay may be restricted to the open string with free ends and should cover
the following items:

• Why it is inconsistent to impose all constraints as physical state conditions.

• How absence of level-1 ghosts restricts the intercept parameter a.

• How equivalence with light-cone gauge results is possible at level 1.

• How the critical dimension emerges at level 2.

END OF PAPER
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