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1

Let Ĉ be the unitary operator corresponding to charge conjugation. Take as given
that positive and negative frequency spinors, us(p) and vs(p) respectively, are related by

vs(p) = CūsT (p) and us(p) = Cv̄sT (p)

where C is a 4× 4 spin-matrix and T denotes the transpose. Show that, for a Dirac field
ψ(x),

Ĉψ(x)Ĉ−1 = ηCCψ̄
T (x) .

Given that C is a unitary matrix with the property that

CγµTC−1 = −γµ

show that
[CTC−1, γµ] = 0

and argue that this implies CT = ±C. For the remainder of the problem, you may take
as given CT = −C.

Show that if ψ(x) satisfies the Dirac equation, so does ψc(x) ≡ ηCCψ̄
T .

Show that ĈψL(x)Ĉ
−1 has the same chirality as ψL.

In just a few paragraphs, explain with a simple example why both C and CP violation
are necessary conditions for baryogenesis to occur in the early universe. [Here C stands
for charge conjugation and CP stands for the product of charge conjugation with parity.]

2

Consider SU(2) gauge theory coupled to a 2-component complex scalar field φ

L = −1

4
F a
µνF

a,µν + (Dµφ)†(Dµφ)−
λ

2

(

φ†φ− v2

2

)2

with λ > 0 and v2 > 0. The covariant derivative is Dµφ = ∂µφ + igAa
µτ

aφ, with
the generators related to the Pauli σ-matrices τa = σa/2 and the field strength tensor
F a
µν = ∂µA

a
ν − ∂νA

a
µ − gǫabcAb

µA
c
ν .

Identify the relevant degrees-of-freedom and determine their masses (ignoring quan-
tum corrections). Comment on the number of massless fields based on symmetry princi-
ples.

What are the interaction terms involving the scalar field?

Explicitly determine any terms in L which give rise to gauge-boson self-interactions
and sketch the vertices.
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Attempt to answer all of the following parts. At the end of the question (continued
on the next page) a number of expressions are given which you may use without proof.

(a) For each of the following elastic scattering processes, draw all of the relevant tree-level,
Standard Model Feynman diagrams:

(i) νµe
− → νµe

− (ii) νee
− → νee

− (iii) ν̄ee
− → ν̄ee

−

(b) Treating the neutrinos as strictly massless, and working in the limit where the electron
mass can be neglected at leading order, use the effective weak Lagrangian

L = − GF√
2

∑

ℓ∈{e,µ}

[

ν̄ℓγ
α(1− γ5)e ēγα(1− γ5)νℓ

+ ν̄ℓγ
α(1− γ5)νℓ ēγα(cV − cAγ

5)e + . . .
]

(the omitted terms are not useful here) to calculate the scattering amplitude M(νµe)
for process (i), given the following labels for each particle’s momentum: νµ(k) +
e−(p) → νµ(k

′) + e−(p′). You may assume that cV and cA are real.

Show the total cross-section

σ(νµe
− → νµe

−) = G2
FF (s)(c

2
V +AcV cA +Bc2A + C)

where F (s) is a function of s = (p+k)2 and A, B, and C are constants, all of which you
should determine. [Hint: To simplify the integration, work in the centre-of-momentum
frame, let θ be the angle between ~p and ~p ′ and apply momentum conservation even
before integrating. This should result in an amplitude-squared with terms proportional
to s2f(cos θ), where f(cos θ) is a polynomial in cos θ.]

(c) Consider processes (ii) and (iii) now. Write down the scattering amplitudes, M(νee)
and M(ν̄ee), for νe(k) + e−(p) → νe(k

′) + e−(p′) and ν̄e(k) + e−(p) → ν̄e(k
′) + e−(p′)

respectively. How are these related to M(νµe)? Without doing much of the work
necessary for part b, use these relations to write down the total cross sections for (ii)
and (iii). You will find it helpful to use the following Fierz identity relating products
of matrix elements:

[γα(1− γ5)]ij [γα(1− γ5)]kl = −[γα(1− γ5)]il[γα(1− γ5)]kj .

[The following expressions may be used without proof:

Tr(γµ1 · · · γµn) = 0 for n odd

Tr(γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ)

Tr(γ5γµγνγργσ) = 4iǫµνρσ

ǫαβσρǫαβλτ = − 2(δσλδ
ρ
τ − δστ δ

ρ
λ)
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(The overall sign of the last equation was incorrect in the lecture notes, but is correct
here.) The differential cross-section for a decay i→ f is given by

dσ =
1

|~vA − ~vB |
1

4EAEB
|Mfi|2 dρf

dρf = (2π)4δ(4)
(

pi −
∑

r∈f

pr

)

∏

r∈f

(

d3pr
(2π)32p0r

)

]

4

(a) Consider the coupling of Standard Model fermions to a scalar field φ via terms such
as

−
√
2λijψ̄

i
Lφψ

j
R + h.c.

Explain how the fields ψL, ψR, and φ transform under SU(2)L × U(1)Y gauge
transformations, including a table of representations and hypercharges for the
Standard Model fermions and scalar. What do the indices i and j correspond
to?

(b) For each of the following decays or transitions, briefly discuss whether they are
allowed in the Standard Model and, if so, via what term(s) in the Lagrangian.

(i) b→ u e−ν̄e (ii) s̄ d→ d̄ s (iii) h→W+W− (iv) h→ τ+µ−

(c) Assume that experiments measure a much larger decay rate for some process than
expected according to Standard Model calculations. Write a paragraph or two
describing how we might modify the Standard Model Lagrangian to account for
new physics.

Let us imagine that the experimentally observed enhancement is for the decays
h→ τ+µ− and h→ τ−µ+. Show that by adding to the Lagrangian the term

∆L = −
√
2λ′ij
Λ2

(ψ̄i
Lφψ

j
R)(φ

†φ) + h.c.

we can describe this enhancement.
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