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1

Consider a Euclidean scalar field theory with scale Λ effective action

Seff
Λ [φ] =

∫

d4x

(

1

2
∂µφ∂µφ+

1

2
m2φ2 +

1

4!
gφ4

)

.

The partition function Z(m2, g) is defined by

Z(m2, g) ≡
∫

6Λ

Dφ exp
(

−Seff
Λ [φ]

)

where the subscript on the path integral indicates an integral over only those Fourier
modes φ̃(p) of φ with |p| 6 Λ.

a) How is the effective action Seff
Λ′ [φ] at a lower scale Λ′ < Λ defined? Show that

Seff
Λ′ [φ] = Seff

Λ [φ]− ln

[
∫

Λ′<p6Λ

Dφ̂ exp
(

−∆S[φ, φ̂]
)

]

(1)

where the meaning of φ̂ should be explained. Find an expression for ∆S[φ, φ̂].

b) Draw all the Feynman diagrams that contribute to Seff
Λ′ [φ] up to and including order

g2, and identify the vertices that each of these contribute to. [You are not required
to evaluate the diagrams.] What vertex types do you expect Seff

Λ′ [φ] to contain if one
could evaluate (1) to all orders in g?

c) Now consider beginning with a generic effective action at scale Λ, containing vertices
involving arbitrary powers of φ and its derivatives. We lower the cutoff to Λ′ = bΛ
with b < 1, then rescale all lengths as x→ x′ = bx in position space, and finally restore
the kinetic term to its canonical form. Show that the (dimensionful) coupling κ of a
generic vertex involving n powers of φ and m derivatives becomes

κ′ =
κ+∆κ

(1 + ∆Z)n/2

(

Λ′

Λ

)m+n−4

,

where the meaning of ∆κ and ∆Z should be explained.
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2 Consider the cubic scalar field theory

S[φ] =

∫

d6x

(

1

2
∂µφ∂µφ+

1

2
m2φ2 +

g

6
φ3

)

in six Euclidean dimensions. In dimensional regularization, the 1-loop correction to the
momentum space propagator of the scalar field is given by the integral

I(k) ≡ (−g)2µ6−d

2

∫

ddp

(2π)d
1

(p+ k)2 +m2

1

p2 +m2
(1)

where k is the momentum carried by the incoming scalar.

(i) With the help of a Feynman diagram, explain the origin of each of the different
factors that appear in (1).

(ii) Show that the divergent part of the integral in equation (1) is

−1

ǫ

g2

(4π)3

(

m2 +
k2

6

)

in d = 6− ǫ dimensions.

(iii) Which counterterms are necessary to absorb this divergence? Find the values of
these counterterms to 1-loop accuracy in the minimal subtraction scheme.

[In this question, you may use without proof the Feynman trick

1

AB
=

∫ 1

0

dx

[Ax+B(1− x)]2
,

and that the volume of a d − 1 dimensional unit sphere is Vol(Sd−1) = (2πd/2) /Γ(d/2),
where the Gamma function is defined by the integral Γ(t) =

∫

∞

0
ds st−1 e−s. You many

also use the fact that Γ(ǫ/2− 1) = −2
ǫ + finite as ǫ→ 0.]
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The dynamics of a (Euclidean) quantum mechanical system can be described by the
path integral

∫

DpDq exp

(

i

∫ T

0

dt pq̇ −
∫ T

0

dtH(p, q)

)

, (1)

with an action that is first–order in the time derivative of q(t) and involves the Hamiltonian
H(p, q).

(i) Give a precise definition of the meaning of the derivative q̇ in the regularized path
integral.

(ii) In the case that H(p, q) = p2

2m + V (q), and taking the path integral measure to be

DpDq =
N
∏

i=1

dpi dqi

show that this first–order path integral is equivalent to the usual path integral
over q(t) alone. Your answer should include a careful description of the resulting
regularized measure Dq.

In real (Minkowskian) time, the wavefunction ψ(qf , T ) for a non-relativistic particle
of unit mass to be found at a location qf at time T is given by the path integral

ψ(qf ;T ) =

∫

Dq exp

(

i

∫ T

0

dt

[

1

2
q̇2 − V (q)

])

× ψ(q0, 0)

in terms of the initial wavefunction ψ(q0, 0). The path integral is taken over all
intermediate values of the fields. Use the discretized path integral to show explicitly
that ψ(qf ;T ) obeys the time–dependent Schrödinger equation. [Hint: Take the measure

for the field at the time step i to be dqi/
√
ti+1 − ti where tN+1 ≡ T .]
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4 The gauge–fixed Lagrangian density for Yang-Mills theory is

L = − 1

4g2
Fµν aF a

µν + (∂µba) (Dµc)
a + ha ∂µAa

µ − ξ

2
haha

where the index a runs over a basis of the Lie algebra of the gauge group, ha is the
Nakanishi–Lautrup field and ξ is a constant gauge–fixing parameter.

a) Give expressions for the fieldstrength F a
µν and covariant derivative of the ghost field

(Dµc)
a in terms of ordinary derivatives, the gauge field Aa

µ and the structure constants
of the Lie algebra of the gauge group.

b) The action above is invariant under the BRST transformations

δAa
µ = ǫ (Dµc)

a , δca = −1

2
ǫfabcc

bcc , δba = ǫha , δha = 0 ,

where ǫ is a constant anticommuting parameter. Obtain an expression for the
corresponding conserved charge QBRST.

c) Assuming that the path integral measure is BRST invariant, derive the Ward identity

〈[QBRST,O(x)] · · · 〉 = 0

where O(x) is an arbitrary local operator, not necessarily BRST invariant, while the
dots represent insertions of gauge invariant local operators built from F a

µν and its
covariant derivatives, inserted away from x. What is the significance of this result?

END OF PAPER
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