

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2015 1:30 pm to 4:30 pm

PAPER 40

ADVANCED FINANCIAL MODELS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

Consider a two asset market model whose prices have dynamics

$$dB_t = B_t r \ dt$$
$$dS_t = S_t(\mu \ dt + \sigma \ dW_t)$$

where r, μ, σ are positive constants and W is a Brownian motion. Consider a perpetual American claim with payout $g(S_t)$, where g is a given non-negative function. Suppose there is a non-negative function V which satisfies the non-linear differential equation

$$\max\left\{\frac{1}{2}\sigma^2 S^2 V''(S) + rSV'(S) - rV(S), g(S) - V(S)\right\} = 0 \text{ for } S > 0.$$
(*)

(a) Show that if the initial wealth is at least $V(S_0)$, then there is an admissible selffinancing strategy (ϕ, π) such that $\phi_t B_t + \pi_t S_t \ge g(S_t)$ almost surely for all $t \ge 0$.

(b) Now suppose that $2r/\sigma^2 < 1$ and $g(S) = \frac{1}{1+S}$ for all S > 0. Find, with verification, a solution to equation (*) and hence an optimal exercise policy of this claim.

$\mathbf{2}$

Let p be a given vector in \mathbb{R}^n , and let P be a bounded \mathbb{R}^n -valued random vector. Suppose that the following condition holds: if $H \in \mathbb{R}^n$ is such that $H \cdot p = 0 = H \cdot P$ almost surely, then H = 0.

- (a) Show that the following statements are equivalent:
 - 1. There exists a positive bounded random variable Y such that $\mathbb{E}(PY) = p$.
 - 2. If $H \in \mathbb{R}^n$ is such that $H \cdot p \leq 0 \leq H \cdot P$ almost surely, then H = 0.

If you use any result from the course, you must prove it.

Now suppose that the equivalent statements (1) and (2) hold. Also suppose n = 3 and that p = (b, s, c) and P = (B, S, C) where B and S are bounded, non-negative random variables and $C = (S - B)^+$.

(b) Show that

$$(s-b)^+ \leqslant c \leqslant s.$$

Furthermore, show that if $0 < \mathbb{P}(S > B) \leq \mathbb{P}(S \ge B) < 1$ then $(s - b)^+ < c$.

CAMBRIDGE

3

Consider a discrete-time, arbitrage-free, *n*-asset market model with prices $(P_t)_{t\geq 0}$ adapted to a filtration $(\mathcal{F}_t)_{t\geq 0}$, where \mathcal{F}_0 is trivial.

(a) What does it mean to say the market is complete?

Suppose that the market is complete.

(b) Fix $t \ge 0$ and let A_1, \ldots, A_k be disjoint \mathcal{F}_t -measurable events of positive probability. Show that $k \le n^t$.

(c) Let $V_t = \mathbb{E}(P_t P_t^\top | \mathcal{F}_{t-1})$ where P_t^\top denotes the transpose of the column vector P_t . Suppose that the $n \times n$ random matrix V_t is positive definite almost surely for each $t \ge 1$, and let

$$Z_t = P_t^\top V_t^{-1} P_{t-1}.$$

Show that $Z_t > 0$ almost surely for each $t \ge 1$. [Hint: You may wish to show that the process $Y_t = Z_1 \cdots Z_t$ defines a martingale deflator. You may use without proof the first fundamental theorem of asset pricing if stated clearly.]

 $\mathbf{4}$

Consider a two-asset market with cash $B_t = 1$ for all $t \ge 0$ and a stock with price dynamics

4

$$dS_t = S_t \sigma_t dW_t$$

where $(W_t)_{t\geq 0}$ is a Brownian motion and $(\sigma_t)_{t\geq 0}$ is a bounded and continuous process adapted to filtration $(\mathcal{F}_t)_{t\geq 0}$.

(a) Show that the process $(\sqrt{S_t})_{t \ge 0}$ is a supermartingale.

(b) If the process σ is independent of W, show that

$$\mathbb{E}(\sqrt{S_T}|\mathcal{F}_t) = \sqrt{S_t}e^{-k\int_t^T \sigma_u^2 du}$$

for a constant k which you should determine.

Let $(f_t(T))_{0 \le t \le T}$ be a continuous random field which evolves as

$$df_t(T) = A_t(T)dt + B_t(T)dW_t$$

where $(A_t(T))_{0 \le t \le T}$ and $(B_t(T))_{0 \le t \le T}$ are bounded, continuous and suitably measurable random fields such that the stochastic integral is well-defined for all $T \ge 0$.

(c) If

$$\mathbb{E}(\sqrt{S_T}|\mathcal{F}_t) = \sqrt{S_t}e^{-\int_t^T f_t(u)du}$$

for all $0 \leq t \leq T$, show that

$$A_t(T) = B_t(T) \left(\int_t^T B_t(u) du - \frac{1}{2} \sigma_t \right)$$

and

$$f_t(t) = k \ \sigma_t^2.$$

[You may use the stochastic Fubini theorem without justification.]

 $\mathbf{5}$

Consider a two-asset discrete-time market with a bond with price $B_t = 1$ for all $t \ge 0$ and a stock with price $(S_t)_{t \ge 0}$.

(a) Consider a contingent claim with time-T payout

$$\sum_{u=1}^T S_u.$$

Find a trading strategy that replicates this claim.

Now suppose the random variable S_T takes values in the finite set $\{0, 1, \ldots, N\}$. Suppose the market has a family of N European call options each with maturity T and with strikes $K \in \{1, \ldots, N\}$.

(b) Show that the claim with time-T payout S_T^2 can be replicated by trading in the stock and the family of call options.

(c) Consider a contingent claim with time-T payout

$$\sum_{t=1}^{T} (S_t - S_{t-1})^2.$$

Show that the claim can be replicated by trading in the bond, the stock and the family of call options. Show that the initial cost of the replication strategy is

$$2\sum_{K=1}^{N} C_0(K) + S_0(1-S_0)$$

where $C_0(K)$ is the time-0 price of the call of strike K.

6

6

Consider a two asset market model with price dynamics

$$dB_t = B_t r \ dt$$

$$dS_t = S_t (r \ dt + \sigma(t, S_t) dW_t)$$

where r is a positive constant, the process W is a Brownian motion generating the filtration, and the positive, smooth function σ is bounded from above and below. To this market, introduce a European call option with strike K and maturity T. Let

$$\mathbb{E}[e^{-rT}(S_T - K)^+] = C(T, K).$$

(a) Show that there exists a self-financing admissible strategy which replicates the payout of the call. Show that the minimal cost of replication is C(T, K). [You may use without proof standard results of stochastic calculus if stated clearly.]

(b) Derive Dupire's PDE for C(T, K). [You may use without proof the following fact from stochastic calculus: for all t > 0, the random variable S_t has a density $\psi(t, \cdot)$. Furthermore, the function ψ is continuous and satisfies the equation

$$\mathbb{E}[(S_T - K)^+] = (S_0 - K)^+ + \int_0^T \int_K^\infty rs\psi(t, s)ds \ dt + \frac{1}{2}\int_0^T K^2\sigma(t, K)^2\psi(t, K)dt$$

for all K, T > 0.]

(c) Let P(T, K) be the minimal replication cost of a European put with strike K and maturity T. Show that P(T, K) also satisfies Dupire's PDE.

END OF PAPER