MATHEMATICAL TRIPOS Part III

Friday, 5 June, 2015 $\,$ 9:00 am to 11:00 am $\,$

PAPER 4

HOMOLOGICAL AND HOMOTOPICAL ALGEBRA

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Let R be an arbitrary unital ring.

Let $\mathcal{E}(C, A)$ be the set of short exact sequences $0 \to A \to B \to C \to 0$ of left *R*modules up to equivalence. Prove that there is a bijective correspondence between $\mathcal{E}(C, A)$ and $\operatorname{Ext}^{1}_{R}(C, A)$.

Let $\mathbb Z$ be the trivial module for the abelian group $\mathbb Z.$ Classify, up to equivalence, all short exact sequences of the form

$$0 \to \mathbb{Z} \to B \to \mathbb{Z} \oplus \mathbb{Z} \to 0.$$

 $\mathbf{2}$

Let R be an arbitrary unital ring. Define the Koszul complex $K(\mathbf{t})$ of a sequence $\mathbf{t} = (t_1, \ldots, t_n)$ of central elements of R.

Let M be a left R-module. Define what it means for a sequence to be regular on M. Show that if \mathbf{t} is regular on M then $K(\mathbf{t}) \otimes_R M$ is quasi-isomorphic to $M/(t_1, \ldots, t_n)M$. You should state carefully any results that you use.

Consider the ring $\mathbb{Z}[X]$ and its modules $\mathbb{Z}/p\mathbb{Z}$ and $\mathbb{Z}/q\mathbb{Z}$ on which X acts trivially. (Here $p, q \ge 2$.) Compute $\operatorname{Ext}^*_{\mathbb{Z}[X]}(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/q\mathbb{Z})$ in the cases where (i) p = q and (ii) p and q are coprime.

3 Define what it means to say a spectral sequence converges to a graded object H^* .

Let R be an arbitrary unital ring, let C be a cochain complex of left R-modules and let F be a bounded filtration on C. State a theorem about the convergence of the spectral sequence associated to the filtered complex (C, F).

Describe how to deduce that there are two spectral sequences computing the cohomology of a double complex that is bounded in both degrees.

Let P be a bounded cochain complex of projective left R-modules and let M be any left R-module with finite projective dimension. By considering the two spectral sequences associated to a suitable double complex prove the following Künneth spectral sequence:

$$E_2^{pq} = \operatorname{Tor}_{-p}(H^q P, M) \Rightarrow H^{p+q}(P \otimes M)$$

Assume now that all boundaries of the complex P_* are also projective. Show the spectral sequence degenerates at the E_2 term.

UNIVERSITY OF

 $\mathbf{4}$

Define the weak equivalences, fibrations and cofibrations that form the projective model structure on the category $\mathbf{Ch}_{\geq 0}(R)$ of nonnegative chain complexes over an arbitrary unital ring R.

Define what is meant by a sequentially small object. Use the small object argument to show that any map $a: X \longrightarrow Y$ in this category factors as a cofibration followed by an acyclic fibration.

Hint: You may assume that acyclic fibrations are characterized by the right lifting property with respect to a certain set of cofibrations that you should specify. You may further assume the domains of these maps are sequentially small.

END OF PAPER