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Consider the process {Xt, t ∈ Z}:

Xt = φXt−1 + ǫt, with ǫt
i.i.d.∼ N(0, σ2).

(a) Carefully explain whether {Xt} can be weakly stationary in the following scenarios:

(i) φ = 1/2;

(ii) φ = 1;

(iii) φ = 2.

(b) What is the motivation for testing φ = 1? Given observations X1, . . . ,Xn, how
would you perform such a test of size α? Write down the test statistic and the
critical region.

[Derivation of the test statistic’s asymptotic distribution is not required here.]

Now consider an autoregressive (AR) process {Yt, t ∈ Z} of order p, where

Yt = φ1Yt−1 + · · ·+ φpYt−p + ǫt, with ǫt
i.i.d.∼ N(0, σ2).

(c) What does it mean to say {Yt} is “causal”? Prove that if {Yt} is causal, then the
roots of the equation

1− φ1z − φ2z
2 − · · · − φpz

p = 0

all lie outside the unit circle.

(d) Suppose {Yt} is causal. Show that its autocovariance function γh decays exponen-
tially, i.e., there exist constant C > 0 and s ∈ (0, 1) such that |γh| 6 Cs|h| for
h = 0,±1,±2, . . ..
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Consider the following autoregressive conditional heteroscedasticity (ARCH) process
{Xt, t ∈ Z}:

Xt = σtǫt, ǫt
i.i.d.∼ N(0, 1),

σ2
t = α0 + α2X

2
t−2,

with α0 > 0 and 1 > α2 > 0. You may assume that under these conditions {Xt} is both
weakly stationary and strongly stationary.

(a) What is meant by “weakly stationary” and “strongly stationary”?

(b) List two reasons why researchers often prefer ARCH processes to autoregressive
moving average (ARMA) processes when modelling financial time series.

(c) Calculate EXt, EX2
t , cov(X

2
t ,X

2
t+1) and EX4

t . Deduce that EX4
t < ∞ if 3α2

2 < 1.

[You can directly use the fact that the fourth moment of a standard normal random
variable is 3.]

(d) Write down the autoregressive representation of this ARCH process. Now given
observations X1, . . . ,Xn, carefully explain how you would estimate α0 and α2 using
the least squares method.

(e) Let f : R → R be any function with E[f2(Xt)] < ∞ and h be any positive integer.
Prove or disprove the following statements:

(i) cov(Xt+h, f(Xt)) = 0;

(ii) cov(Xt, f(Xt+h)) = 0.
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(a) Define the autocorrelation function (ACF) and partial autocorrelation function
(PACF) of a zero-mean weakly stationary process.

(b) Briefly describe how the sample ACF and PACF can be used to obtain a good guess
of appropriate orders in autoregressive moving average (ARMA) models given a
particular time series data set.

Now consider the following invertible moving average (MA) process {Xt, t ∈ Z} of order
q:

Xt = ǫt + θ1ǫt−1 + · · ·+ θqǫt−q, with ǫt
i.i.d.∼ N(0, σ2).

(c) If q = 1, compute the PACF of this MA(1) process at lag 2.

(d) Now assume q ∈ {1, 2, 3, . . .}. Use the spectral representation theorem to prove that
the spectral density of {Xt} is fX(ω) = σ2|Θ(e2πiω)|2, where Θ(z) = 1+ θ1z+ · · ·+
θqz

q.

(e) Prove that the variance of
(

∑n
t=1 Xt

)

/
√
n converges to σ2Θ2(1) as n → ∞. How

about the variance of
(

∑n
t=1 X2t−1

)

/
√
n?
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(a) Let F : R → [0, 1] be a CDF. Define its associated quantile function F−1 : (0, 1) → R

and prove that F−1(U) has CDF F if U ∼ Unif[0, 1].

(b) Let f(x) be a density function on R
d and h : Rd → R be a function such that

∫

Rd |h(x)|f(x)dx < ∞. Define the importance sampling estimator µ̂IS of the integral
µ =

∫

Rd h(x)f(x)dx, and show that it is unbiased. Give the importance distribution
that minimizes the variance of µ̂IS, and prove your claim.

(c) (i) Given U1 ∼ Unif[0, 1], how can you simulate X ∼ f , where f(x) =
α
βx

α−1 exp(−xα/β) if x > 0, f(x) = 0 if x 6 0, and α, β > 0.

(ii) Given U2, U3
iid∼ Unif[0, 1], give the Box-Muller algorithm to generate

X1,X2
iid∼ N(0, 1), and prove that it works.

(iii) Given U1, U2, U3
iid∼ Unif[0, 1], explain how can you simulate from the density

function g(x) defined by

g(x) = (2π)−1/2

∫ ∞

0
exp

(

−x2 + θ4

2θ2

)

dθ, x ∈ R.
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(a) Define the term “ϕ-irreducibility” for a Markov Chain on a state space S ⊂ R
d, and

explain what it intuitively means.

(b) State the Ergodic Theorem and the Central Limit Theorem (CLT) for Markov
Chains on a state space S ⊂ R

d. (please explain the different terms involved in the
asymptotic variance of the CLT).

(c) Let π : Rd → [0,∞) be an unnormalized density, from which we wish to sample.
State sufficient conditions under which the general Metropolis-Hasting’s algorithm
with proposal density q(y|x) and stationary distribution π(x)/

∫

Rp π(y)dy satisfies
the assumptions of the Central Limit Theorem for Markov Chains (no proof is
needed).

(d) Let π(·) be an unnormalized density on R
p, and denote by

πi(·|x1, . . . , xi−1, xi+1, . . . , xp)

the full conditional density of Xi|(Xj : j 6= i), where

X = (X1, . . . ,Xp) ∼ π.

Consider the following algorithm:

I. Choose x0 ∈ R
p such that π(x0) > 0, and set X(0) = x0.

II. For each t = 0, 1, . . . , T − 1,

1) choose kt ∈ {1, . . . , p} uniformly at random,

2) draw Yt ∼ πkt

(

·
∣

∣X
(t)
j : j 6= kt

)

,

3) set

X
(t+1)
j =

{

X
(t)
j , j 6= kt,

Yt, j = kt.

(i) Give the transition kernel p(x, x′) associated to this Markov Chain.

(ii) Show that this algorithm generates a Markov Chain
(

X(t)
)

t=0,1,...
whose

transition kernel is in detailed balance with π.

(for simplicity, you can assume that π(x) > 0 for all x ∈ R
p).
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Let K > 1 be an integer and D = {1, . . . ,K}2. Let S ∈ {−1, 1}D, be random, with
distribution

π(S) ∝ exp



−J
∑

{i,j}∈N

sisj



 ,

where J 6= 0 is a constant, (S)i = si, i ∈ D, and N is the neighbour relationship on D,
i.e., it is the subset of the set of unordered pairs {{i, j} : i, j ∈ D, i 6= j} containing {i, j}
if and only if i and j are vertical or horizontal neighbours. Let

X = (Xi)i∈D

be random, with conditional distribution Xi|S ∼ N(µi, 1), where

µi =





∑

j∈Ni

sj





7

,

Ni = {j ∈ D : {j, i} ∈ N} denote the neighbours of i ∈ D. Furthermore, assume that
all Xi, i ∈ D, are independent, conditional on S. Suppose we observe a realisation of
X = (Xi)i∈D.

(a) Write the posterior distribution π(S|X) up to a normalizing constant.

(b) Given i ∈ D, which factors of π(S|X) depend on Si?

(c) Derive the full conditionals of Si, i.e. πi(si|(sj)j 6=i,X), and give the Gibbs sampling
algorithm for generating a Markov Chain (S(t))t>1 with stationary distribution
π(S|X).

(d) Given a realization S(1), . . . , S(T ) of the Markov Chain, explain how can you estimate

θ = E

[

exp

(

∑

i∈D

√

2 + Si

)]

,

where the expectation is taken with respect to the posterior distribution of S|X.
What theoretical result justifies the use of that particular estimator, and is it
applicable here? (you can assume without proof that the Markov Chain is
irreducible).

(e) Show that the Markov Chain (S(t))t>1 is irreducible.

END OF PAPER
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