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1

Let P,Q be probability measures on a measure space (Ω,A) with common domi-
nating measure µ, and denote the corresponding probability density functions by dP/dµ
and dQ/dµ, respectively.

Define the Kullback-Leibler divergence K(P,Q) between P and Q. Prove that

∫

Ω

∣

∣

∣

∣

dP

dµ
− dQ

dµ

∣

∣

∣

∣

dµ 6
√

2K(P,Q).

Now define the Hellinger distance as

H2(P,Q) =

∫

Ω

(
√

dP

dµ
−
√

dQ

dµ

)2

dµ.

Prove that
H(P,Q) 6

√

K(P,Q).

[Hint: You may use − log(x+ 1) > −x for all x > −1 without proof.]

2

Define the Gaussian white noise model with drift function f and noise level
1/
√
n, n ∈ N.

Let g1, . . . , gN be random variables each with distribution N(0, 1). Show that, for
every N ∈ N,

E max
k=1,...N

|gk| 6
√

2 log(2N).

For a dyadic partition of [0, 1] with grid points

k

2J
, k = 0, . . . , 2J − 1, J ∈ N,

define the Haar-wavelet projection ΠVJ
(f) of f . Given observations in the Gaussian white

noise model, construct an unbiased estimator Π̂VJ
(f) of ΠVJ

(f) and show that for every
n ∈ N and J ∈ N,

E‖Π̂VJ
(f)−ΠVJ

(f)‖∞ 6

√

2J (2J + 2) log 2

n
.

[Here ‖h‖∞ denotes the supremum norm supx∈[0,1] |h(x)| of a function h : [0, 1] → R.]
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State Hoeffding’s inequality.

Denote by Ω = {−1, 1}n the discrete hypercube, and endow it with the Hamming
distance

ρ(ω, ω′) =

n
∑

i=1

1[ωi 6=ω′

i]
,

where ω = (ω1, . . . , ωn), ω
′ = (ω′

1, . . . , ω
′
n) are points in Ω. For n > 8, prove that there

exists a set S ⊂ Ω of cardinality |S| > en/4 that is n/8-separated for the ρ-distance, that
is, S satisfies mins,s′∈S,s 6=s′ ρ(s, s

′) > n/8. [You may use Hoeffding’s inequality without
proof.]

4

Let p, n ∈ N and let the n × p random matrix X = (Xij) consist of i.i.d. N(0, 1)
entries. Define

Σ̂ =
1

n
XTX

and
R
p
k = {θ ∈ R

p : θj = 0 ∀ j > k}, k < p.

Assume that n > Ck log p for some constant C. Show that for C large enough there exists
a constant C ′ > 0 such that

P

(

sup
θ∈Rp

k
,θ 6=0

∣

∣

∣

∣

∣

θT Σ̂θ − θT θ

θT θ

∣

∣

∣

∣

∣

>
1

2

)

6 2 exp{−C ′k log p}.

[You may use the following inequality without proof in your argument: For g1, . . . , gn i.i.d.
N(0, 1) random variables and Z =

∑n
i=1(g

2
i − 1),

P (|Z| > 4(
√
nz + z) 6 2e−z.

You may further use the fact that one requires at most (A/δ)k balls of radius not exceeding
0 < δ < A to cover the unit ball of a k-dimensional Euclidean space, where A is a numerical
constant.]
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