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1 Statistics in Medical Practice
In a survey of sexual attitudes and lifestyles a random sample of individuals was

taken from a population and sampled individuals were asked about their sexual behaviours.
Researchers were interested in the association between condom use and number of sexual
partners in the past five years in the population of individuals who had more than one
sexual partner in the past five years. Some individuals declined to provide information
about condom use and/or number of sexual partners. The researchers consider it probable
that, among individuals with more than one sexual partner, those with many sexual
partners and those who did not use condoms were less likely to provide information about
these variables.

(a) Consider the data on condom use and number of sexual partners. Define what it
means for these data to be missing completely at random (MCAR), missing at random
(MAR) and missing not at random (MNAR).

(b) Say whether you think these data are MCAR, MAR or MNAR, and briefly explain
why.

(c) The researchers fit a logistic regression model to the dataset. The outcome (i.e.
dependent variable) is the binary variable condom use (1=always use condom, 0=not
always use condom). The covariates (i.e. independent variables) are the number of
sexual partners in the past five years, age and sex (1=male, 0=female). Age and
sex are fully observed. The researchers fit the logistic regression model only to the
individuals with more than one sexual partner in the past five years and with no
missing data on condom use or number of sexual partners.

Provide an intuitive explanation for why the resulting parameter estimates may be
biased.

(d) The researchers realise that this analysis could be inefficient because it ignores available
information on individuals with incomplete data. They turn to you for advice on how
to use multiple imputation by chained equations (also known as multiple imputation
by full-conditional specification).

Provide a detailed, step-by-step description of how multiple imputation by chained
equations works in general, and how it could be applied to this dataset. (You may
assume that the researchers know about Bayesian statistics and are happy with the
use of mathematical notation, but remember to define any notation you use.)

(e) In light of your answer to part (b), briefly discuss whether the assumptions underlying
this multiple imputation method are plausible.

(f) Sampled individuals were also asked about their alcohol consumption and their history
of sexually transmitted disease. Almost all sampled individuals provided information
on these variables, and these variables are moderately correlated with condom use and
number of sexual partners.

Explain how you could use the information on alcohol consumption and history of
sexually transmitted disease in the multiple imputation procedure you described in
part (d), and state what the potential advantages are of doing this.
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2 Statistics in Medical Practice
A meta-analysis examining the effectiveness of radiotherapy for treatment of lo-

calised prostate cancer includes data from 21 randomised trials comparing radiotherapy
against prostatectomy. The table shows the data on mortality at 12 months after ran-
domisation, extracted from 5 of these trials.

Trial name Radiotherapy Prostatectomy log odds ratio Standard error
(Deaths/Total) (Deaths/Total) of log odds

ratio

Gallo 2004 20/105 17/103 0.17 0.36

Steineck 2008 30/90 20/60 0.00 0.35

Estwick 2011 20/132 15/131 0.32 0.37

Pollard 2002 183/364 171/367 0.15 0.15

Olsen 2006 89/470 77/466 0.17 0.17

(a) Give three reasons which could motivate researchers to carry out a meta-analysis
rather than just presenting a table of results from separate trials.

(b) Show the calculation of the log odds ratio and its variance for the Steineck 2008
trial, comparing radiotherapy against prostatectomy. Calculate an approximate 95%
confidence interval for the log odds ratio. Interpret the log odds ratio estimate and
confidence interval in words. [You may assume that the 97.5% quantile of the standard
Normal distribution is approximately equal to 2.]

(c) The sum of the inverse variances of the log odds ratios from all 21 trials is equal to
400 and the sum of their squares is 16000. Calculate the between-trial heterogeneity
estimate . [Hint: the Q statistic has been calculated as 38.] Show how to calculate the
I-squared statistic. Interpret the values of the heterogeneity estimate and I-squared
statistic in words.

(d) Examine the influence of the Steineck 2008 trial in a fixed effect meta-analysis of all 21
trials, by calculating its percentage weight. Give a formula for the percentage weight
given to the same trial in a random effects meta-analysis.

(e) Define “within-study bias”, briefly describe its causes and effects, and suggest two
approaches that researchers could use to address suspected within-study biases in a
meta-analysis.

(f) The type of radiotherapy given to patients differed between the trials included in
the meta-analysis. Some trials used conventional radiotherapy techniques (RT), while
others used 3-dimensional conformal radiotherapy (3DCRT). The combined log odds
ratio estimate obtained for the RT subgroup of trials was 0.45, and its variance was
0.11, while that for the 3DCRT subgroup was 0.16, and its variance was 0.05. Carry
out a formal test to compare the subgroups and interpret the result.
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3 Statistics in Medical Practice
An infectious disease X has an incubation period T between infection and symptoms

that may be described by a distribution with density f(t; ·). Assume that new infections
occur in a continuous-time non-homogeneous Poisson process with rate h(t) at time t.

(a) Write down the back-calculation equation relating the new infection rate h(·) to the
rate of new symptomatic infections µ(·).

(b) Assume now that time is discretised. Write down the discrete-time approximation to
the back-calculation equation, defining any notation you use.

(c) Assume now that f(t; ·) is the density of a Weibull distribution with scale parameter
λ and shape parameter κ, i.e. that

f(t;λ, κ) =
κ

λ

(

t

λ
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{
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t
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)κ}

.

Write down the back-calculation equation in terms of the Weibull distribution, in both
continuous-time and discrete-time representations, defining any further notation you
use.

The remainder of the question assumes the discrete-time representation of back-
calculation.

(d) Denote by hi the expected number of new infections occurring at the end of a time
interval [ti−1, ti), and assume that hi is parameterised in terms of a parameter θ,
i.e. that hi := hi(θ). Assume a time series y1:N := (y1, y2, . . . , yN ) of counts of
new symptomatic infections is observed over the time interval [t0, tN ), where yk
is the number of symptomatic cases occurring in the interval [tk−1, tk), for each
k = 1, 2, . . . , N . Denote by Yk, k = 1, 2, . . . , N the random variables of which the
observations y1:N are realisations. Show that for j 6= k, Yj and Yk are independent
Poisson random variables.

(e) Hence write down the likelihood of observing the data y1:N given the parameters θ, λ
and κ.

(f) Assume now that disease X is in general diagnosed when symptoms occur after the
incubation period, but that for a small proportion of infections, diagnosis occurs early
in the progression of the disease. The observations y1:N now represent diagnosis counts,
the sum of diagnoses occurring either early or “late”. The disease progression and
diagnosis process may be represented by the multi-state model below.

1− δE

δE

1− δN

1. Early
infection

hi(θ)

2. Early
diagnosis

4. Non-early
diagnosis

3. Non-early
infection

δN

Assume that the “early infection” stage lasts 1 time interval, after which individuals
are either diagnosed with probability δE or progress to “non-early” infection with
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probability 1−δE . Denote the random variables representing the number of individuals
entering states 1-4 in the kth interval by Sk = (S1k, S2k, S3k, S4k). Assuming no-one
is infected prior to time t0, for the four time points t1, . . . , t4, write down expressions
for the state incidences Sk, k = 1, . . . , 4, in terms of θ and the diagnosis probabilities
δE and δN .

(g) Hence derive a general expression for pEk, the expected proportion of new diagnoses
that are early at time tk.
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4 Analysis of Survival Data

(a) A time-to-event dataset comprises n individuals: xi being either the time of the
observed event (vi = 1) or the time of censoring (vi = 0) for the ith individual.
The common density and survivor function are f(t) and F (t) respectively. Write
down the contribution to the likelihood of

(i) an individual censored at xi;

(ii) an individual with an observed event at xi.

In the case that F (t) = exp(−θt), θ > 0 derive the log-likelihood function and obtain
the maximum likelihood estimator of θ, checking that it is indeed a maximum.

(b) A student attends 13 one-hour lectures given by a lecturer who uses an overhead
projector (OHP). During one of those lectures the OHP bulb failed after 30 minutes
and was not replaced; during the remaining lectures the bulb did not fail. OHP bulbs
have a time-to-failure distribution which is exponential with rate parameter λ. Failed
bulbs are replaced between lectures, so - although it is known that a bulb has survived
to the start of the lecture - it is not known how long that bulb has survived for.

By considering survival probabilities conditional on having already survived to a
particular time:

(i) write down the contribution to the likelihood for λ of a bulb first used at time
t = 0, which is working at t = τ and is still working at t = τ + 1.

(ii) write down the contribution to the likelihood for λ of a bulb first used at time
t = 0, which is working at t = τ and fails at t = τ + 1

2 .

Comment on the dependence of your answers on τ . Does it matter that it is not
known whether the bulb used in a particular lecture is the same as the bulb used in a
previous lecture? Find the maximum likelihood estimate of λ.

How would your answer be different if the failing bulb had been replaced immediately
and the replacement bulb did not fail before the end of that lecture?

Suppose instead the time-to-failure followed a Weibull distribution with F (t) =
exp [−(λt)p)], λ > 0, p > 0. Could you use this dataset to estimate the parameters?
Would it help if it were a larger dataset with more bulb failures?
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5 Analysis of Survival Data
A time-to-event dataset comprises n individuals: xi being either the time of the

observed event or the time of censoring for the ith individual. The times of the observed
events are aj, j = 1, . . . , d with exactly one event occurring at each aj and aj < aj+1. The
individuals are divided into two groups 0 and 1 with gi indicating the group membership
for the ith individual (gi ∈ {0, 1}).

Interpret Yj,k, defined by:

Yj,k = #{i : xi > aj & gi = k}.

Denoting the individual that has the event at aj by π(j), write down in terms of
Yj,k the probability p(j, k) that an individual of group k had the event at aj given the
history of the process up to just before time aj and assuming all individuals are subject
to the same hazard h0(t).

Interpret zj given by:
zj = gπ(j) − p(j, 1)

and indicate how z given by

z =
d

∑

j=1

zj

can be used to test the hypothesis that the hazard function for group 1 is the same as that
for group 0.

Suppose now that the hazard function for group k is exp(βk)h0(t). What then is
the probability that the individual with the event at aj is from group k given the history
of the process up to just before aj? Find the expectation of zj, conditional on the history
up to just before aj, as a function of β. Verify that the expectation when β = 0 is as you
expect.
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6 Analysis of Survival Data
What is meant by the history, Ht−, of a time-to-event process up to but not including

time t? What is meant by the at-risk function?

Write down an expression for the probability of the ith individual of a set of n having
an event in the time interval [t, t+dt), conditional on Ht−, in terms of the common hazard
function h(t) and the ith individual’s at-risk function.

Let dN+(t) be the total number of events in the interval [t, t+ dt), with dN+(t) ∈
{0, 1}. What, conditional on Ht−, is:

1. the expectation of dN+(t)?

2. the expectation of the square of dN+(t)?

3. the variance of dN+(t)?

Use your answer to (1) to obtain the Nelson-Aalen estimator Ĥ(t) for the integrated
hazard. How does dĤ(t) relate to dN+(t)?

From your answer to (3), obtain the variance of dĤ(t), conditional on Ht−, in terms
of dH(t) and the at-risk functions. Substitute dĤ(t) for dH(t) to obtain an estimated
variance of dĤ(t), conditional on Ht−. Hence obtain an estimator for the variance of the
Nelson-Aalen estimator of H(t).
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7 Analysis of Survival Data
Individuals are at risk of events of two distinct types: A and B; the two events

have independent continuous survival distributions. What is meant by the cause-specific

hazard for A?

An individual’s cause-specific hazards for events A and B are given by hA(t) = α

and hB(t) = β respectively.

1. What is the probability that no event of either type has occurred before time t?

2. What is the probability that no event of either type has occurred before t and that
an event of type A occurs at or later than t but before t+ dt?

3. What is the probability that an event occurs before or at time t and that event is
of type A?

4. What is the probability that an event of type A occurs at some time?

5. Show that the density function for the time to an event of type A, given that an
event of type A occurs, has an exponential distribution with rate parameter α+ β.

You are reviewing a research paper in which an author reports a time-to-death analysis.
He states that out of 150 subjects he observed 100 deaths, the remaining 50 subjects
being censored. He assumes an exponential distribution of time-to-death with common
rate parameter λ and obtains a maximum likelihood estimate for λ of 0.3/year.

Unfortunately, he estimated the parameter λ using only the subjects who died as
“the censored subjects provided no useful information”.

6. What is wrong with his reasoning?

Assuming the time-to-censoring distribution is also exponential:

7. What is 0.3/year really an estimate of?

8. What proportion of the subjects died? How can you use this information?

9. Obtain a proper estimate of the cause-specific hazard for death.

END OF PAPER
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