

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2015 9:00 am to 11:00 am

PAPER 34

ACTUARIAL STATISTICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Consider a portfolio of insurance polices where the claim sizes X_1, X_2, \ldots are independent identically distributed positive random variables, and the number N of claims in one year is independent of the X_i . Derive expressions, in terms of the mean and variance of N and X_1 , for the mean and variance of the total amount S claimed on the portfolio in one year. Derive an expression for the moment generating function of S in terms of the probability generating function of N and the moment generating function of X_1 .

 $\mathbf{2}$

Now assume that X_1 has an exponential distribution with mean μ .

- (a) In portfolio A, suppose that N has a Poisson distribution with mean λ . Find the mean and variance of S.
- (b) Consider a second portfolio B, where, given λ , the random variable N has a Poisson distribution with mean λ , and where λ is a random variable with density

$$f(\lambda) = \left(\frac{p}{q}\right)^2 \lambda e^{-p\lambda/q}, \quad \lambda > 0,$$

with $0 . Write down the mean <math>\lambda_0$ of λ . Find the mean and variance of S for portfolio B. Suppose we wish to compare portfolio B with the special case of portfolio A where the value of λ is λ_0 . Compare the means and variances of S for these two portfolios.

(c) For portfolio B, find the probability generating function of N. Find the moment generating function of S, and hence show that the distribution of S may be written as a mixture of three distributions. You should specify the three distributions and the mixing proportions.

CAMBRIDGE

2 A portfolio has claim sizes X_1, X_2, \ldots , which are independent identically distributed positive random variables, and the number of claims in one year is N (independent of the X_i). Let $S = \sum_{i=1}^N X_i$. Let S_I^* and \tilde{S}_I be the direct insurer's payout in one year on this portfolio under a quota share reinsurance contract with retained proportion α ($0 < \alpha < 1$), and under a stop loss reinsurance contract with retention M (> 0), respectively. Write down expressions for S_I^* and \tilde{S}_I in terms of S.

(a) Suppose that S has an exponential distribution with mean μ_S . Write down the expectation and variance of S_I^* in terms of α and μ_S .

Find the expectation and variance of \tilde{S}_I in terms of M and μ_S .

If α is chosen so that $\mathbb{E}[S_I^*] = \mathbb{E}[\tilde{S}_I]$, find $\operatorname{var}[S_I^*] - \operatorname{var}[\tilde{S}_I]$ in terms of μ_S and M and verify directly that this expression is non-negative.

(b) Now suppose that S is no longer assumed to be exponentially distributed. Consider a reinsurance contract where the direct insurer's payout in one year is $S_I^{\dagger} = g(S)$, where $0 \leq g(x) \leq x$ for all $x \geq 0$. Suppose also that $\mathbb{E}[S_I^{\dagger}] = \mathbb{E}[\tilde{S}_I] = c$. By showing that

$$\operatorname{var}\left[S_{I}^{\dagger}\right] = \mathbb{E}\left[(g(S) - M)^{2}\right] - (M - c)^{2},$$

show that the variance of S_I^{\dagger} is at least as large as the variance of the direct insurer's payout under stop loss reinsurance.

UNIVERSITY OF

3

In a classical risk model, claims arrive in a Poisson process with rate λ (> 0), the premium income rate is c (> 0), and the claim sizes have density function f, moment generating function M and finite mean μ (> 0). Assume that the relative safety loading factor ρ is positive, and that there is a unique positive solution R to $M(r) - 1 = cr/\lambda$.

Show that the probability of run $\psi(u)$ with initial capital $u \ge 0$ satisfies $\psi(u) \le e^{-Ru}$ for $u \ge 0$. Find $\lim_{u\to\infty} \psi(u)$.

You are given that

$$\psi(u) = \frac{\lambda\mu}{c} \int_u^\infty f_I(x) dx + \frac{\lambda\mu}{c} \int_0^u \psi(u-x) f_I(x) dx,$$

where $f_I(x)$ is a probability density function. Show that

$$\lim_{u \to \infty} e^{Ru} \psi(u) = A, \text{ where } A = \frac{\rho}{R \int_0^\infty x e^{Rx} f_I(x) dx}.$$

[Hint: Results from renewal theory may be used without proof provided they are clearly stated. You may assume that $\int_0^\infty e^{Rx} f_I(x) dx = c/(\lambda \mu)$.]

For a particular choice of claim-size distribution,

$$\psi(u) = ae^{-cu} + be^{-du}, \quad u \ge 0,$$

where a > 0, 0 < a + b < 1 and $0 < c < d < \infty$. Find R, A and ρ in terms of a, b, c and d.

UNIVERSITY OF

 $\mathbf{4}$

Describe the Bühlmann model and derive the credibility factor and the credibility premium for this model.

For a particular risk, let X_j be the amount claimed in year j, j = 1, 2, ..., and suppose that, given θ , the random variables $X_1, X_2, ...$ are independent with density

$$f(x \mid \theta) = \left(\frac{1}{\theta}\right)^{\alpha} \frac{x^{\alpha - 1}e^{-x/\theta}}{\Gamma(\alpha)}, \quad x > 0,$$

where $\alpha > 0$ is known, and that the prior density of θ is

$$\pi(\theta) = \frac{\lambda^k e^{-\lambda/\theta}}{\theta^{k+1}(k-1)!}, \quad \theta > 0,$$

where k is an integer greater than 2. The claims sizes for years $1, \ldots, n$ have been observed. Find the Bühlmann model credibility estimate for the expected claim size in year n + 1.

Find the Bayesian estimate under quadratic loss of the expected claim size in year n + 1 given the claims sizes in years $1, \ldots, n$, and compare this value with the Bühlmann credibility estimate.

[Hint: For $\nu > 0$ and a positive integer m, the function $g(y) = \nu^m e^{-\nu/y} / (y^{m+1}(m-1)!)$ is a probability density function.]

END OF PAPER