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Consider a portfolio of insurance polices where the claim sizes X1,X2, . . . are
independent identically distributed positive random variables, and the number N of claims
in one year is independent of the Xi. Derive expressions, in terms of the mean and variance
of N and X1, for the mean and variance of the total amount S claimed on the portfolio in
one year. Derive an expression for the moment generating function of S in terms of the
probability generating function of N and the moment generating function of X1.

Now assume that X1 has an exponential distribution with mean µ.

(a) In portfolio A, suppose that N has a Poisson distribution with mean λ. Find the
mean and variance of S.

(b) Consider a second portfolio B, where, given λ, the random variable N has a Poisson
distribution with mean λ, and where λ is a random variable with density

f(λ) =

(

p

q

)2

λe−pλ/q, λ > 0,

with 0 < p = 1− q < 1. Write down the mean λ0 of λ. Find the mean and variance
of S for portfolio B. Suppose we wish to compare portfolio B with the special case
of portfolio A where the value of λ is λ0. Compare the means and variances of S
for these two portfolios.

(c) For portfolio B, find the probability generating function of N . Find the moment
generating function of S, and hence show that the distribution of S may be written
as a mixture of three distributions. You should specify the three distributions and
the mixing proportions.
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2 A portfolio has claim sizes X1,X2, . . ., which are independent identically distributed
positive random variables, and the number of claims in one year is N (independent of the
Xi). Let S =

∑N
i=1

Xi. Let S∗
I and S̃I be the direct insurer’s payout in one year on this

portfolio under a quota share reinsurance contract with retained proportion α (0 < α < 1),
and under a stop loss reinsurance contract with retention M (> 0), respectively. Write
down expressions for S∗

I and S̃I in terms of S.

(a) Suppose that S has an exponential distribution with mean µS. Write down the
expectation and variance of S∗

I in terms of α and µS.

Find the expectation and variance of S̃I in terms of M and µS .

If α is chosen so that E
[

S∗
I

]

= E
[

S̃I
]

, find var
[

S∗
I

]

− var
[

S̃I
]

in terms of µS and M
and verify directly that this expression is non-negative.

(b) Now suppose that S is no longer assumed to be exponentially distributed. Consider

a reinsurance contract where the direct insurer’s payout in one year is S†
I = g(S),

where 0 6 g(x) 6 x for all x > 0. Suppose also that E[S†
I ] = E[S̃I ] = c. By showing

that
var

[

S†
I

]

= E
[

(g(S) −M)2
]

− (M − c)2,

show that the variance of S†
I is at least as large as the variance of the direct insurer’s

payout under stop loss reinsurance.
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In a classical risk model, claims arrive in a Poisson process with rate λ (> 0), the
premium income rate is c (> 0), and the claim sizes have density function f , moment
generating function M and finite mean µ (> 0). Assume that the relative safety loading
factor ρ is positive, and that there is a unique positive solution R to M(r)− 1 = cr/λ.

Show that the probability of ruin ψ(u) with initial capital u > 0 satisfies ψ(u) 6

e−Ru for u > 0. Find limu→∞ ψ(u).

You are given that

ψ(u) =
λµ

c

∫ ∞

u
fI(x)dx +

λµ

c

∫ u

0

ψ(u − x)fI(x)dx,

where fI(x) is a probability density function. Show that

lim
u→∞

eRuψ(u) = A, where A =
ρ

R
∫∞

0
xeRxfI(x)dx

.

[Hint: Results from renewal theory may be used without proof provided they are clearly
stated. You may assume that

∫∞

0
eRxfI(x)dx = c/

(

λµ
)

.]

For a particular choice of claim-size distribution,

ψ(u) = ae−cu + be−du, u > 0,

where a > 0, 0 < a+ b < 1 and 0 < c < d <∞. Find R, A and ρ in terms of a, b, c and d.
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Describe the Bühlmann model and derive the credibility factor and the credibility
premium for this model.

For a particular risk, let Xj be the amount claimed in year j, j = 1, 2, . . ., and
suppose that, given θ, the random variables X1,X2, . . . are independent with density

f(x | θ) =

(

1

θ

)α xα−1e−x/θ

Γ(α)
, x > 0,

where α > 0 is known, and that the prior density of θ is

π(θ) =
λke−λ/θ

θk+1(k − 1)!
, θ > 0,

where k is an integer greater than 2. The claims sizes for years 1, . . . , n have been observed.
Find the Bühlmann model credibility estimate for the expected claim size in year n+ 1.

Find the Bayesian estimate under quadratic loss of the expected claim size in year
n+ 1 given the claims sizes in years 1, . . . , n, and compare this value with the Bühlmann
credibility estimate.

[Hint: For ν > 0 and a positive integer m, the function g(y) = νme−ν/y/
(

ym+1(m−
1)!

)

is a probability density function.]

END OF PAPER
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