MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2015 1:30 pm to 3:30 pm

PAPER 32

MODERN STATISTICAL METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Let $X \in \mathbb{R}^{n \times p}$ be a matrix of predictors and Y an *n*-vector of responses. Assume that the columns of X have been centred and scaled and that Y has been centred.

Define the *Lasso* estimator $\hat{\beta}_{\lambda}^{L}$ with tuning parameter $\lambda > 0$ in this context. Write out the KKT conditions for $\hat{\beta}_{\lambda}^{L}$.

Now write out the steps of the Least Angle Regression (LAR) algorithm for regressing Y on X where the initial active set $A_1 = \emptyset$, $\lambda_0 = \infty$, and $\lambda_1, \lambda_2, \ldots$ are successive values of λ^{hit} where the active sets then change to A_2, A_3, \ldots . You may assume that the variable to enter the active set at λ^{hit} is always uniquely determined. Let $\hat{\beta}$ be the solution path produced by the LAR algorithm. Prove that for $m \ge 2$,

$$\frac{1}{n}|X_k^T\{Y - X\hat{\beta}(\lambda)\}| = \lambda \text{ for } k \in A_m, \ \lambda \in [\lambda_m, \lambda_{m-1}],$$

with λ_m taken as 0 in the above if m is the final step of the algorithm.

Now assume that the Lasso solution is unique at every $\lambda > 0$. Show that if for $m \ge 2$,

 $\operatorname{sign}(X_k^T\{Y - X\hat{\beta}(\lambda)\}) = \operatorname{sign}(\hat{\beta}_k(\lambda)) \text{ for } k \in A_m, \ \lambda \in [\lambda_m, \lambda_{m-1}],$

again with $\lambda_m = 0$ in the above if *m* is the final step of the algorithm, then the Lasso solution path and the LAR path coincide so $\hat{\beta}(\lambda) = \hat{\beta}_{\lambda}^L$ for $\lambda > 0$.

CAMBRIDGE

 $\mathbf{2}$

Let $Y \in \mathbb{R}^n$ be a vector of responses and $X \in \mathbb{R}^{n \times p}$ a matrix of predictors with $\operatorname{rank}(X) = p$. Suppose that the columns of X have been centred and scaled, and that Y is also centred. Consider the linear model (after centring),

$$Y = X\beta^0 + \varepsilon - \bar{\varepsilon}\mathbf{1},$$

where $\operatorname{Var}(\varepsilon) = \sigma^2 I \ (\sigma^2 > 0)$, **1** is an *n*-vector of 1's and $\overline{\varepsilon} = \mathbf{1}^T \varepsilon / n$. Write down a formula for the ordinary least squares estimator $\hat{\beta}^{OLS}$ of β^0 .

Write down a formula for the *ridge regression* estimator $\hat{\beta}_{\lambda}^{R}$ of β^{0} when the tuning parameter is $\lambda > 0$.

Prove that there exists a $\lambda > 0$ depending on β^0 and σ^2 , such that for all $x^* \in \mathbb{R}^p$ with $||x^*||_2 = 1$, we have

$$\mathbb{E}\{(x^{*T}\hat{\beta}^{R}_{\lambda} - x^{*T}\beta^{0})^{2}\} < \mathbb{E}\{(x^{*T}\hat{\beta}^{OLS} - x^{*T}\beta^{0})^{2}\}.$$

Finally show that for any fixed $\lambda > 0$ and fixed $\delta > 0$, there exist $x^* \in \mathbb{R}^p$ with $||x^*||_2 = 1$ and $\beta^0 \in \mathbb{R}^p$ such that

$$\mathbb{E}\{(x^{*T}\hat{\beta}^R_{\lambda} - x^{*T}\beta^0)^2\} > \mathbb{E}\{(x^{*T}\hat{\beta}^{OLS} - x^{*T}\beta^0)^2\} + \delta.$$

3

Suppose we have null hypotheses H_1, \ldots, H_m and associated *p*-values p_1, \ldots, p_m . Let I_0 be the set of indices corresponding to true null hypotheses so that $H_i : i \in I_0$ are the true null hypotheses. What is the *family-wise error rate* (FWER)? Describe the *Bonferroni correction* and prove that it can be used to control the FWER at a desired level α .

What is an *intersection hypothesis*? What is the *closure* of the family H_1, \ldots, H_m of hypotheses? Describe the *closed testing procedure*, introducing any other tests that are needed in order for it to work. Prove that the closed testing procedure can control the FWER at level α .

Now consider a family of intersection hypotheses $H_I : I \in \mathcal{I}$ that is hierarchical in the sense that for any $I, J \in \mathcal{I}$, we either have $I \cap J = \emptyset$ or $I \subseteq J$ or $J \subseteq I$. Suppose that for each $H_I, I \in \mathcal{I}$ we have a *p*-value p_I . Define the adjusted *p*-value of H_I to be

$$p_I^{\mathrm{adj}} = \max_{J: J \in \mathcal{I}, J \supseteq I} \frac{m}{|J|} p_J.$$

Consider the procedure that rejects all hypotheses H_I for which $p_I^{\text{adj}} \leq \alpha$. Show that with probability at least $1 - \alpha$, this procedure makes no false rejections.

UNIVERSITY OF

 $\mathbf{4}$

Let n, p be integers greater than 1, and let $k \in \{1, \ldots, p\}$. In this question, we use the following notation. For a vector $z \in \mathbb{R}^p$, $z_{-k} \in \mathbb{R}^{p-1}$ is the vector z with its kth component removed. For a matrix $X \in \mathbb{R}^{n \times p}$, X_k is its kth column and $X_{-k} \in \mathbb{R}^{n \times (p-1)}$ is X with its kth column removed. Furthermore, for a matrix $A \in \mathbb{R}^{p \times p}$, we will write $A_{-k,k} \in \mathbb{R}^{p-1}$ for the kth column of A with its kth component A_{kk} removed. We will denote an n-vector of 1's by **1**.

Let $Z \sim N_p(\mu, \Sigma)$ with Σ positive definite. Explain what is meant by a conditional independence graph for this distribution. [You need not explain what a graph is.]

Let $z \in \mathbb{R}^p$. Derive the distribution of $Z_k | Z_{-k} = z_{-k}$.

Suppose we have data x_1, \ldots, x_n forming the rows of a matrix $X \in \mathbb{R}^{n \times p}$, which we can model as realisations of independent $N_p(\mu, \Sigma)$ random vectors. Motivate and explain the procedure of *nodewise regression* for estimating the conditional independence graph based on this data.

Now consider the following objective function over $\mu_1, \ldots, \mu_p \in \mathbb{R}$ and $\Theta \in \mathbb{R}^{p \times p}$, where we constrain $\Theta_{kk} = 0$ for $k = 1, \ldots, p$:

$$\frac{1}{2n} \sum_{k=1}^{p} \|X_k - \mu_k \mathbf{1} - X_{-k} \Theta_{-k,k}\|_2^2 + \lambda \sum_{j < k} \sqrt{\Theta_{jk}^2 + \Theta_{kj}^2}.$$
 (1)

Explain how the minimiser of this objective can be used to estimate the conditional independence graph, discussing and motivating the form of the penalty function being used.

END OF PAPER